Performance study and critical review on energy aware routing protocols in mobile sink based WSNs

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aparna Ashok Kamble ◽  
Balaji Madhavrao Patil

Abstract Wireless networks involve spatially extended independent sensor nodes, and it is associated with each other’s to preserve and identify physical and environmental conditions of the particular application. The sensor nodes batteries are equipped with restricted energy for working with an energy source. Consequently, efficient energy consumption is themain important challenge in wireless networks, and it is outfitted witharestricted power storage capacity battery. Therefore, routing protocol with energy efficiency is essential in wireless sensor network (WSN) to offer data transmission and connectivity with less energy consumption. As a result, the routing scheme is the main factor for decreasing energy consumption and the network's lifetime. The energy-aware routing model is mainly devised for WSN with high network performance when transmitting data to a sink node. Hence, in this paper, the effectiveness of energy-aware routing protocols in mobile sink-based WSNs is analyzed and justified. Some energy-aware routing systems in mobile sink-based WSN techniques, such as optimizing low-energy adaptive clustering hierarchy (LEACH) clustering approach, hybrid model using fuzzy logic, and mobile sink. The fuzzy TOPSIS-based cluster head selection (CHS) technique, mobile sink-based energy-efficient CHS model, and hybrid Harris Hawk-Salp Swarm (HH-SS) optimization approach are taken for the simulation process. Additionally, the analytical study is executed using various conditions, like simulation, cluster size, nodes, mobile sink speed, and rounds. Moreover, the performance of existing methods is evaluated using various parameters, namely alive node, residual energy, delay, and packet delivery ratio (PDR).

2013 ◽  
Vol 303-306 ◽  
pp. 191-196
Author(s):  
Wei Zhang ◽  
Ling Hua Zhang

Energy aware routing is a critical issue in WSN. Prior work in energy aware routing concerned about transmission energy consumption and residual energy, but often do not consider path hop length, which leads to unnecessary consumption of power at sensor nodes. Improved algorithm adds the control of routing hops. Simulation proof the improved algorithm is feasible, effectively reducing the network delay and the path of energy consumption. Taking into account the WSN is dynamic, in the end we put up dynamic hops control in order to adapt to WSN and select the optimal path.


Wireless sensor networks (WSNs) have become increasingly important in the informative development of communication technology. The growth of Internet of Things (IoT) has increased the use of WSNs in association with large scale industrial applications. The integration of WSNs with IoT is the pillar for the creation of an inescapable smart environment. A huge volume of data is being generated every day by the deployment of WSNs in smart infrastructure. The collaboration is applicable to environmental surveillance, health surveillance, transportation surveillance and many more other fields. A huge quantity of data which is obtained in various formats from varied applications is called big data. The Energy efficient big data collection requires new techniques to gather sensor-based data which is widely and densely distributed in WSNs and spread over wider geographical areas. In view of the limited range of communication and low powered sensor nodes, data gathering in WSN is a tedious task. The energy hole is another considerable issue that requires attention for efficient handling in WSN. The concept of mobile sink has been widely accepted and exploited, since it is able to effectively alleviate the energy hole problem. Scheduling a mobile sink with energy efficiency is still a challenge in WSNs time constraint implementation due to the slow speed of the mobile sink. The paper addresses the above issues and the proposal contains four-phase data collection model; the first phase is the identification of network subgroups, which are formed due to a restricted range of communication in sensor nodes in a wide network, second is clustering which is addressed on each identified subgroup for reducing energy consumption, third is efficient route planning and fourth is based on data collection. The two time-sensitive route planning schemes are presented to build a set of trajectories which satisfy the deadline constraint and minimize the overall delay. We have evaluated the performance of our schemes through simulation and compared them with the generic enhanced expectation-maximization (EEM) mobility based scenario of data collection. Simulation results reveal that our proposed schemes give much better results as compared to the generic EEM mobility approach in terms of selected performance metrics such as energy consumption, delay, network lifetime and packet delivery ratio.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 81 ◽  
Author(s):  
Meena Malik ◽  
Mukesh Sharma

The Sensor technology has made encouraging trends in the field of wireless Networks by its innovative methods and adaptability. The  fundamental issue for wireless sensor networks (WSN) is to minimize energy consumption at each node due to restricted energy source.   The sensor nodes generally get random deployment and  need cooperation to accomplish specific operation in the network like  monitoring or  tracking any target in the environment. Due to limited power source nodes need careful use of energy resources. This work targets on simulating the power consumption behavior and analyzing the performance of 802.11 and S-MAC protocol for medium access control layer in wireless networks. S-MAC improves energy consumption by allocating bandwidth in efficient manner and  avoiding causes of energy waste. After simulation, it was found that S-MAC is Power-Efficient over 802.11 without losing on the performance using NS-2.35. The paper mainly emphasize on representing the plot for energy matrices along with throughput, delay and packet delivery ratio.  


Author(s):  
Kummathi Chenna Reddy ◽  
Geetha D. Devanagavi ◽  
Thippeswamy M. N.

Wireless sensor networks are typically operated on batteries. Therefore, in order to prolong network lifetime, an energy efficient routing algorithm is required. In this paper, an energy-aware routing protocol for the co-operative MIMO scheme in WSNs (EARPC) is presented. It is based on an improved cluster head selection method that considers the remaining energy level of a node and recent energy consumption of all nodes. This means that sensor nodes with lower energy levels are less likely to be chosen as cluster heads. Next, based on the cooperative node selection in each cluster, a virtual MIMO array is created, reducing uneven distribution of clusters. Simulation results show that the proposed routing protocol may reduce energy consumption and improve network lifetime compared with the LEACH protocol


2006 ◽  
Vol 07 (01) ◽  
pp. 37-49 ◽  
Author(s):  
ARJAN DURRESI ◽  
VAMSI PARUCHURI ◽  
MIMOZA DURRESI ◽  
LEONARD BAROLLI

We present Delay-Energy Aware Routing (DEAP) a novel protocol for heterogeneous wireless ad hoc networks. DEAP is a crosslayer scheme that: first, manages adaptively the energy control by controlling the wakeup cycle of sensors based on the experienced packet delay; and second, rout packet in each hoc by distributing the load a group of neighboring nodes. The primary result of DEAP is that it enables a flexible and wide range of tradeoffs between the packet delay and the energy consumption. Therefore, DEAP supports delay sensitive applications of heterogeneous networks that include sensors and actors. DEAP is scalable to the change in network size, node type, node density and topology. DEAP accommodates seamlessly such network changes, including the presence of actors in heterogeneous sensor networks. Indeed, while DEAP does not count on actors, it takes advantage of them, and uses their resources when possible, thus reducing the energy consumption of sensor nodes. Through analysis and simulation evaluations, we show that DEAP improves the packet delay and network lifetime compared to other protocols.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2739 ◽  
Author(s):  
Muhammad Usman Younus ◽  
Saif ul Islam ◽  
Sung Won Kim

A wireless sensor network (WSN) has achieved significant importance in tracking different physical or environmental conditions using wireless sensor nodes. Such types of networks are used in various applications including smart cities, smart building, military target tracking and surveillance, natural disaster relief, and smart homes. However, the limited power capacity of sensor nodes is considered a major issue that hampers the performance of a WSN. A plethora of research has been conducted to reduce the energy consumption of sensor nodes in traditional WSN, however the limited functional capability of such networks is the main constraint in designing sophisticated and dynamic solutions. Given this, software defined networking (SDN) has revolutionized traditional networks by providing a programmable and flexible framework. Therefore, SDN concepts can be utilized in designing energy-efficient WSN solutions. In this paper, we exploit SDN capabilities to conserve energy consumption in a traditional WSN. To achieve this, an energy-aware multihop routing protocol (named EASDN) is proposed for software defined wireless sensor network (SDWSN). The proposed protocol is evaluated in a real environment. For this purpose, a test bed is developed using Raspberry Pi. The experimental results show that the proposed algorithm exhibits promising results in terms of network lifetime, average energy consumption, the packet delivery ratio, and average delay in comparison to an existing energy efficient routing protocol for SDWSN and a traditional source routing algorithm.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 295
Author(s):  
P Vijayalakshmi ◽  
Aruna Jacintha.T ◽  
V Rajendran

Major constrain in Acoustic communication network is the consumption of energy by senor nodes. The need to regulate the energy con-sumption of senor nodes relay mainly on underwater applications like disaster prevention, tsunami warning and other environmental moni-toring, where the sensor need to transmit the sensed data constantly to the control station for critical analysis. This paper mainly focuses in designing a routing protocol that can challenge a better life expectancy of underwater sensor nodes. From the broader area of research in UWSN, VBF routing protocol gives a promising performance in term of increase in data throughput, PDR and energy consumption. Hence an energy efficient vector based forwarding protocol (EEVBF) is designed which can efficiently regulates the energy consumption when compared to VBF. Based on simulation results, the performance analysis of data throughput, packet delivery ratio, and energy consumed using aquasim network simulators.  


2021 ◽  
Author(s):  
Huaying Yin ◽  
Hongmei Yang ◽  
Maryam Hajiee

Abstract Rapid developments in radio technology and processors have led to the emergence of small sensor nodes that provide communication over Wireless Sensor Networks (WSNs). The crucial issues in these networks are energy consumption management and reliable data exchange. Due to the limited resources of sensor nodes, WSNs become a vulnerable target against many security attacks. Thus, energy-aware trust-based techniques have become a powerful tool for detecting nodes’ behavior and providing security solutions in WSN. Clustering-based routings are one of the most effective methods in increasing the WSN performance. In this paper, an Energy-Aware Trust algorithm based on the AODV protocol and Multi-path Routing approach (EATMR) is proposed to improve the security of WSNs. EATMR consists of two main phases: firstly, the nodes are clustered based on the Open-Source Development Model Algorithm (ODMA), and then in the second phase, clustering-based routing is applied. In this paper, the routing process follows the AODV protocol and multi-path routes approach with considering energy-aware trust. Here, the optimal and safe route is determined based on various parameters, namely energy, trust, hop-count, and distance. In this regard, we emphasize the evaluation of node trust using direct trust, indirect trust, and a multi-objective function. The simulation has been performed in MATLAB software in the presence of a Denial of Service (DoS) attack. The simulation results show that EATMR performs better than other approaches such as M-CSO and SQEER in terms of successfully detecting malicious nodes and enhancing network lifetime, energy consumption, and packet delivery ratio.


2010 ◽  
Vol 44-47 ◽  
pp. 772-776
Author(s):  
Shi Qiang Ma ◽  
Xiao Gang Qi

Mobile sink can be used to balance energy consumption of sensor nodes in Wireless Sensor Networks (WSNs). Sink is required to inform sensors about its new location information whenever necessary. However, frequent location updates of mobile sink can lead to both rapid energy consumption of sensor nodes and increased collisions in wireless transmissions. We propose ALUPS (A New Solution with Adaptive Location Update and Propagation Scheme) for mobile sinks to resolve this problem. When a sink moves, it only needs to broadcast its location information within a local adaptive area other than among the entire network. The overhearing feature of wireless transmission is employed when the adaptive location information is transferred. Compared with LURP (Local update-based routing protocol in wireless sensor networks with mobile sinks) and SLPS (Simple Location Propagation Scheme for Mobile Sink in Wireless Sensor Networks), ALUPS performs better both in low energy consumption and success delivery ratio.


Sign in / Sign up

Export Citation Format

Share Document