Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model: A Novel Approach Using 3D UNET Based Deep Convolutional Neural Network for Predicting Survival in Gliomas

Author(s):  
Ujjwal Baid ◽  
Sanjay Talbar ◽  
Swapnil Rane ◽  
Sudeep Gupta ◽  
Meenakshi H. Thakur ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xuhui Fu

In recent years, deep learning, as a very popular artificial intelligence method, can be said to be a small area in the field of image recognition. It is a type of machine learning, actually derived from artificial neural networks, and is a method used to learn the characteristics of sample data. It is a multilayer network, which can learn the information from the bottom to the top of the image through the multilayer network, so as to extract the characteristics of the sample, and then perform identification and classification. The purpose of deep learning is to make the machine have the same analytical and learning capabilities as the human brain. The ability of deep learning in data processing (including images) is unmatched by other methods, and its achievements in recent years have left other methods behind. This article comprehensively reviews the application research progress of deep convolutional neural networks in ancient Chinese pattern restoration and mainly focuses on the research based on deep convolutional neural networks. The main tasks are as follows: (1) a detailed and comprehensive introduction to the basic knowledge of deep convolutional neural and a summary of related algorithms along the three directions of text preprocessing, learning, and neural networks are provided. This article focuses on the related mechanism of traditional pattern repair based on deep convolutional neural network and analyzes the key structure and principle. (2) Research on image restoration models based on deep convolutional networks and adversarial neural networks is carried out. The model is mainly composed of four parts, namely, information masking, feature extraction, generating network, and discriminant network. The main functions of each part are independent and interdependent. (3) The method based on the deep convolutional neural network and the other two methods are tested on the same part of the Qinghai traditional embroidery image data set. From the final evaluation index of the experiment, the method in this paper has better evaluation index than the traditional image restoration method based on samples and the image restoration method based on deep learning. In addition, from the actual image restoration effect, the method in this paper has a better image restoration effect than the other two methods, and the restoration results produced are more in line with the habit of human observation with the naked eye.


2020 ◽  
Author(s):  
Zicheng Hu ◽  
Alice Tang ◽  
Jaiveer Singh ◽  
Sanchita Bhattacharya ◽  
Atul J. Butte

AbstractCytometry technologies are essential tools for immunology research, providing high-throughput measurements of the immune cells at the single-cell level. Traditional approaches in interpreting and using cytometry measurements include manual or automated gating to identify cell subsets from the cytometry data, providing highly intuitive results but may lead to significant information loss, in that additional details in measured or correlated cell signals might be missed. In this study, we propose and test a deep convolutional neural network for analyzing cytometry data in an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical outcome of interest. Using nine large CyTOF studies from the open-access ImmPort database, we demonstrated that the deep convolutional neural network model can accurately diagnose the latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous data from different studies. In addition, we developed a permutation-based method for interpreting the deep convolutional neural network model and identified a CD27-CD94+ CD8+ T cell population significantly associated with latent CMV infection. Finally, we provide a tutorial for creating, training and interpreting the tailored deep learning model for cytometry data using Keras and TensorFlow (github.com/hzc363/DeepLearningCyTOF).


2020 ◽  
Vol 64 (2) ◽  
pp. 20507-1-20507-10 ◽  
Author(s):  
Hee-Jin Yu ◽  
Chang-Hwan Son ◽  
Dong Hyuk Lee

Abstract Traditional approaches for the identification of leaf diseases involve the use of handcrafted features such as colors and textures for feature extraction. Therefore, these approaches may have limitations in extracting abundant and discriminative features. Although deep learning approaches have been recently introduced to overcome the shortcomings of traditional approaches, existing deep learning models such as VGG and ResNet have been used in these approaches. This indicates that the approach can be further improved to increase the discriminative power because the spatial attention mechanism to predict the background and spot areas (i.e., local areas with leaf diseases) has not been considered. Therefore, a new deep learning architecture, which is hereafter referred to as region-of-interest-aware deep convolutional neural network (ROI-aware DCNN), is proposed to make deep features more discriminative and increase classification performance. The primary idea is that leaf disease symptoms appear in leaf area, whereas the background region does not contain useful information regarding leaf diseases. To realize this, two subnetworks are designed. One subnetwork is the ROI subnetwork to provide more discriminative features from the background, leaf areas, and spot areas in the feature map. The other subnetwork is the classification subnetwork to increase the classification accuracy. To train the ROI-aware DCNN, the ROI subnetwork is first learned with a new image set containing the ground truth images where the background, leaf area, and spot area are divided. Subsequently, the entire network is trained in an end-to-end manner to connect the ROI subnetwork with the classification subnetwork through a concatenation layer. The experimental results confirm that the proposed ROI-aware DCNN can increase the discriminative power by predicting the areas in the feature map that are more important for leaf diseases identification. The results prove that the proposed method surpasses conventional state-of-the-art methods such as VGG, ResNet, SqueezeNet, bilinear model, and multiscale-based deep feature extraction and pooling.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinhua Tian ◽  
Hailun Xie ◽  
Siyuan Hu ◽  
Jia Liu

The increasingly popular application of AI runs the risk of amplifying social bias, such as classifying non-white faces as animals. Recent research has largely attributed this bias to the training data implemented. However, the underlying mechanism is poorly understood; therefore, strategies to rectify the bias are unresolved. Here, we examined a typical deep convolutional neural network (DCNN), VGG-Face, which was trained with a face dataset consisting of more white faces than black and Asian faces. The transfer learning result showed significantly better performance in identifying white faces, similar to the well-known social bias in humans, the other-race effect (ORE). To test whether the effect resulted from the imbalance of face images, we retrained the VGG-Face with a dataset containing more Asian faces, and found a reverse ORE that the newly-trained VGG-Face preferred Asian faces over white faces in identification accuracy. Additionally, when the number of Asian faces and white faces were matched in the dataset, the DCNN did not show any bias. To further examine how imbalanced image input led to the ORE, we performed a representational similarity analysis on VGG-Face's activation. We found that when the dataset contained more white faces, the representation of white faces was more distinct, indexed by smaller in-group similarity and larger representational Euclidean distance. That is, white faces were scattered more sparsely in the representational face space of the VGG-Face than the other faces. Importantly, the distinctiveness of faces was positively correlated with identification accuracy, which explained the ORE observed in the VGG-Face. In summary, our study revealed the mechanism underlying the ORE in DCNNs, which provides a novel approach to studying AI ethics. In addition, the face multidimensional representation theory discovered in humans was also applicable to DCNNs, advocating for future studies to apply more cognitive theories to understand DCNNs' behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Soulef Bouaafia ◽  
Seifeddine Messaoud ◽  
Randa Khemiri ◽  
Fatma Elzahra Sayadi

With the rapid advancement in many multimedia applications, such as video gaming, computer vision applications, and video streaming and surveillance, video quality remains an open challenge. Despite the existence of the standardized video quality as well as high definition (HD) and ultrahigh definition (UHD), enhancing the quality for the video compression standard will improve the video streaming resolution and satisfy end user’s quality of service (QoS). Versatile video coding (VVC) is the latest video coding standard that achieves significant coding efficiency. VVC will help spread high-quality video services and emerging applications, such as high dynamic range (HDR), high frame rate (HFR), and omnidirectional 360-degree multimedia compared to its predecessor high efficiency video coding (HEVC). Given its valuable results, the emerging field of deep learning is attracting the attention of scientists and prompts them to solve many contributions. In this study, we investigate the deep learning efficiency to the new VVC standard in order to improve video quality. However, in this work, we propose a wide-activated squeeze-and-excitation deep convolutional neural network (WSE-DCNN) technique-based video quality enhancement for VVC. Thus, the VVC conventional in-loop filtering will be replaced by the suggested WSE-DCNN technique that is expected to eliminate the compression artifacts in order to improve visual quality. Numerical results demonstrate the efficacy of the proposed model achieving approximately − 2.85 % , − 8.89 % , and − 10.05 % BD-rate reduction of the luma (Y) and both chroma (U, V) components, respectively, under random access profile.


Author(s):  
Devon Livingstone ◽  
Aron S. Talai ◽  
Justin Chau ◽  
Nils D. Forkert

Abstract Background Otologic diseases are often difficult to diagnose accurately for primary care providers. Deep learning methods have been applied with great success in many areas of medicine, often outperforming well trained human observers. The aim of this work was to develop and evaluate an automatic software prototype to identify otologic abnormalities using a deep convolutional neural network. Material and methods A database of 734 unique otoscopic images of various ear pathologies, including 63 cerumen impactions, 120 tympanostomy tubes, and 346 normal tympanic membranes were acquired. 80% of the images were used for the training of a convolutional neural network and the remaining 20% were used for algorithm validation. Image augmentation was employed on the training dataset to increase the number of training images. The general network architecture consisted of three convolutional layers plus batch normalization and dropout layers to avoid over fitting. Results The validation based on 45 datasets not used for model training revealed that the proposed deep convolutional neural network is capable of identifying and differentiating between normal tympanic membranes, tympanostomy tubes, and cerumen impactions with an overall accuracy of 84.4%. Conclusion Our study shows that deep convolutional neural networks hold immense potential as a diagnostic adjunct for otologic disease management.


Sign in / Sign up

Export Citation Format

Share Document