scholarly journals Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xuhui Fu

In recent years, deep learning, as a very popular artificial intelligence method, can be said to be a small area in the field of image recognition. It is a type of machine learning, actually derived from artificial neural networks, and is a method used to learn the characteristics of sample data. It is a multilayer network, which can learn the information from the bottom to the top of the image through the multilayer network, so as to extract the characteristics of the sample, and then perform identification and classification. The purpose of deep learning is to make the machine have the same analytical and learning capabilities as the human brain. The ability of deep learning in data processing (including images) is unmatched by other methods, and its achievements in recent years have left other methods behind. This article comprehensively reviews the application research progress of deep convolutional neural networks in ancient Chinese pattern restoration and mainly focuses on the research based on deep convolutional neural networks. The main tasks are as follows: (1) a detailed and comprehensive introduction to the basic knowledge of deep convolutional neural and a summary of related algorithms along the three directions of text preprocessing, learning, and neural networks are provided. This article focuses on the related mechanism of traditional pattern repair based on deep convolutional neural network and analyzes the key structure and principle. (2) Research on image restoration models based on deep convolutional networks and adversarial neural networks is carried out. The model is mainly composed of four parts, namely, information masking, feature extraction, generating network, and discriminant network. The main functions of each part are independent and interdependent. (3) The method based on the deep convolutional neural network and the other two methods are tested on the same part of the Qinghai traditional embroidery image data set. From the final evaluation index of the experiment, the method in this paper has better evaluation index than the traditional image restoration method based on samples and the image restoration method based on deep learning. In addition, from the actual image restoration effect, the method in this paper has a better image restoration effect than the other two methods, and the restoration results produced are more in line with the habit of human observation with the naked eye.

Author(s):  
Syed Farhan Hyder Abidi

India accounts for the world’s largest number of cases in TB, with 2.8 million cases annually, and accounts for more than a quarter of the global TB burden. Tuberculosis (TB) is caused by the bacterium (Mycobacterium tuberculosis) which most commonly affects the lungs. TB is transmitted from person to person through the air. When people with TB cough, sneeze or spit, the germs are propelled into the air. This paper showcases a methodology which uses a Deep Learning Model (dCNN) for the detection of Tuberculosis in the lungs. The accuracy obtained by the methods for the model is desirable and dependable, which is increasingly productive in contrast to the accuracy shown by other neural networks.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emre Kiyak ◽  
Gulay Unal

Purpose The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to obtain target tracking in autonomous aircraft. Design/methodology/approach First, to follow the visual target, the detection methods were used and then the tracking methods were examined. Here, four models (deep convolutional neural networks (DCNN), deep convolutional neural networks with fine-tuning (DCNNFN), transfer learning with deep convolutional neural network (TLDCNN) and fine-tuning deep convolutional neural network with transfer learning (FNDCNNTL)) were developed. Findings The training time of DCNN took 9 min 33 s, while the accuracy percentage was calculated as 84%. In DCNNFN, the training time of the network was calculated as 4 min 26 s and the accuracy percentage was 91%. The training of TLDCNN) took 34 min and 49 s and the accuracy percentage was calculated as 95%. With FNDCNNTL, the training time of the network was calculated as 34 min 33 s and the accuracy percentage was nearly 100%. Originality/value Compared to the results in the literature ranging from 89.4% to 95.6%, using FNDCNNTL, better results were found in the paper.


Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 487 ◽  
Author(s):  
Bosheng Qin ◽  
Letian Liang ◽  
Jingchao Wu ◽  
Qiyao Quan ◽  
Zeyu Wang ◽  
...  

Down syndrome is one of the most common genetic disorders. The distinctive facial features of Down syndrome provide an opportunity for automatic identification. Recent studies showed that facial recognition technologies have the capability to identify genetic disorders. However, there is a paucity of studies on the automatic identification of Down syndrome with facial recognition technologies, especially using deep convolutional neural networks. Here, we developed a Down syndrome identification method utilizing facial images and deep convolutional neural networks, which quantified the binary classification problem of distinguishing subjects with Down syndrome from healthy subjects based on unconstrained two-dimensional images. The network was trained in two main steps: First, we formed a general facial recognition network using a large-scale face identity database (10,562 subjects) and then trained (70%) and tested (30%) a dataset of 148 Down syndrome and 257 healthy images curated through public databases. In the final testing, the deep convolutional neural network achieved 95.87% accuracy, 93.18% recall, and 97.40% specificity in Down syndrome identification. Our findings indicate that the deep convolutional neural network has the potential to support the fast, accurate, and fully automatic identification of Down syndrome and could add considerable value to the future of precision medicine.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2021 ◽  
pp. 1-17
Author(s):  
Hania H. Farag ◽  
Lamiaa A. A. Said ◽  
Mohamed R. M. Rizk ◽  
Magdy Abd ElAzim Ahmed

COVID-19 has been considered as a global pandemic. Recently, researchers are using deep learning networks for medical diseases’ diagnosis. Some of these researches focuses on optimizing deep learning neural networks for enhancing the network accuracy. Optimizing the Convolutional Neural Network includes testing various networks which are obtained through manually configuring their hyperparameters, then the configuration with the highest accuracy is implemented. Each time a different database is used, a different combination of the hyperparameters is required. This paper introduces two COVID-19 diagnosing systems using both Residual Network and Xception Network optimized by random search in the purpose of finding optimal models that give better diagnosis rates for COVID-19. The proposed systems showed that hyperparameters tuning for the ResNet and the Xception Net using random search optimization give more accurate results than other techniques with accuracies 99.27536% and 100 % respectively. We can conclude that hyperparameters tuning using random search optimization for either the tuned Residual Network or the tuned Xception Network gives better accuracies than other techniques diagnosing COVID-19.


2021 ◽  
Author(s):  
Shima Baniadamdizaj ◽  
Mohammadreza Soheili ◽  
Azadeh Mansouri

Abstract Today integration of facts from virtual and paper files may be very vital for the expertise control of efficient. This calls for the record to be localized at the photograph. Several strategies had been proposed to resolve this trouble; however, they may be primarily based totally on conventional photograph processing strategies that aren't sturdy to intense viewpoints and backgrounds. Deep Convolutional Neural Networks (CNNs), on the opposite hand, have demonstrated to be extraordinarily sturdy to versions in history and viewing attitude for item detection and classification responsibilities. We endorse new utilization of Neural Networks (NNs) for the localization trouble as a localization trouble. The proposed technique ought to even localize photos that don't have a very square shape. Also, we used a newly accrued dataset that has extra tough responsibilities internal and is in the direction of a slipshod user. The end result knowledgeable in 3 exclusive classes of photos and our proposed technique has 83% on average. The end result is as compared with the maximum famous record localization strategies and cell applications.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pei Yang ◽  
Yong Pi ◽  
Tao He ◽  
Jiangming Sun ◽  
Jianan Wei ◽  
...  

Abstract Background 99mTc-pertechnetate thyroid scintigraphy is a valid complementary avenue for evaluating thyroid disease in the clinic, the image feature of thyroid scintigram is relatively simple but the interpretation still has a moderate consistency among physicians. Thus, we aimed to develop an artificial intelligence (AI) system to automatically classify the four patterns of thyroid scintigram. Methods We collected 3087 thyroid scintigrams from center 1 to construct the training dataset (n = 2468) and internal validating dataset (n = 619), and another 302 cases from center 2 as external validating datasets. Four pre-trained neural networks that included ResNet50, DenseNet169, InceptionV3, and InceptionResNetV2 were implemented to construct AI models. The models were trained separately with transfer learning. We evaluated each model’s performance with metrics as following: accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), recall, precision, and F1-score. Results The overall accuracy of four pre-trained neural networks in classifying four common uptake patterns of thyroid scintigrams all exceeded 90%, and the InceptionV3 stands out from others. It reached the highest performance with an overall accuracy of 92.73% for internal validation and 87.75% for external validation, respectively. As for each category of thyroid scintigrams, the area under the receiver operator characteristic curve (AUC) was 0.986 for ‘diffusely increased,’ 0.997 for ‘diffusely decreased,’ 0.998 for ‘focal increased,’ and 0.945 for ‘heterogeneous uptake’ in internal validation, respectively. Accordingly, the corresponding performances also obtained an ideal result of 0.939, 1.000, 0.974, and 0.915 in external validation, respectively. Conclusions Deep convolutional neural network-based AI model represented considerable performance in the classification of thyroid scintigrams, which may help physicians improve the interpretation of thyroid scintigrams more consistently and efficiently.


Sign in / Sign up

Export Citation Format

Share Document