scholarly journals Test and Implementation of Control Algorithm in Hybrid Energy System with Phase Change Material Storage Tank in State Flow Matlab Toolbox

Author(s):  
Paweł Obstawski ◽  
Tomasz Bakoń ◽  
Anna Kozikowska
Author(s):  
Sujit Kumar Bhuyan ◽  
Prakash Kumar Hota ◽  
Bhagabat Panda

This paper presents the detailed modeling of various components of a grid connected hybrid energy system (HES) consisting of a photovoltaic (PV) system, a solid oxide fuel cell (SOFC), an electrolyzer and a hydrogen storage tank with a power flow controller. Also, a valve controlled by the proposed controller decides how much amount of fuel is consumed by fuel cell according to the load demand. In this paper fuel cell is used instead of battery bank because fuel cell is free from pollution. The control and power management strategies are also developed. When the PV power is sufficient then it can fulfill the load demand as well as feeds the extra power to the electrolyzer. By using the electrolyzer, the hydrogen is generated from the water and stored in storage tank and this hydrogen act as a fuel to SOFC. If the availability of the power from the PV system cannot fulfill the load demand, then the fuel cell fulfills the required load demand. The SOFC takes required amount of hydrogen as fuel, which is controlled by the PID controller through a valve. Effectiveness of this technology is verified by the help of computer simulations in MATLAB/SIMULINK environment under various loading conditions and promising results are obtained.


Author(s):  
Ben Xu ◽  
Peiwen Li ◽  
Cholik Chan

With a large capacity thermal storage system using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency of solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF). While the dual-media sensible heat storage system has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study; particularly, the sizing of volumes of storage tanks considering actual operation conditions is of significance. In this paper, a strategy for LHSS volume sizing is proposed, which is based on computations using an enthalpy-based 1D model. One example of 60MW solar thermal power plant with 35% thermal efficiency is presented. In the study, potassium hydroxide (KOH) is adopted as PCM and Therminol VP-1 is used as HTF. The operational temperatures of the storage system are 390°C and 310°C, respectively for the high and low temperatures. The system is assumed to operate for 100 days with 6 hours charge and 6 hours discharge every day. From the study, the needed height of the thermal storage tank is calculated from using the strategy of tank sizing. The method for tank volume sizing is of significance to engineering application.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
NORHUDA ABDUL MANAF ◽  
Muhammad Hussin Abdul Jabar ◽  
Muhammad Hussin Abdul Jabar ◽  
Nor Ruwaida Jamian

Phase change material (PCM) features an attractive option due to its solar thermal storage capability to assist the cooling/heating process especially during night operation, thus contributing to the reduction of energy cost and carbon footprint. This study aims to analyse the emergence of PCM in the application of solar thermal energy. Subsequently, to envisage Technology Readiness Level (TRL) and commercialisation opportunity based on historical and contemporary research trends. This review encompasses of peer-reviewed literatures from Scopus database for one decade between 2010 and 2019. Based on the review, there is a moderate growth on the research related to PCM-solar thermal at 22% of emergence rate from the past one decade. China has dominated in this research development by concurring approximately 22% from the number of research articles published globally. It can be concluded that the application of PCM in solar thermal energy system is at TRL 5 which reflects research and development (R&D) progress is at intermediate prototypical development based on the trend of academic publication. Furthermore, based on the review, PCM features great potential in commercialisation opportunity due to its vital contribution as a frontier material/substance in overcoming the challenges of energy and environmental insecurity.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5904
Author(s):  
Jahan Zeb Alvi ◽  
Yongqiang Feng ◽  
Qian Wang ◽  
Muhammad Imran ◽  
Lehar Asip Khan ◽  
...  

Solar energy is a potential source for a thermal power generation system. A direct vapor generation solar organic Rankine cycle system using phase change material storage was analyzed in the present study. The overall system consisted of an arrangement of evacuated flat plate collectors, a phase-change-material-based thermal storage tank, a turbine, a water-cooled condenser, and an organic fluid pump. The MATLAB programming environment was used to develop the thermodynamic model of the whole system. The thermal storage tank was modeled using the finite difference method and the results were validated against experimental work carried out in the past. The hourly weather data of Karachi, Pakistan, was used to carry out the dynamic simulation of the system on a weekly, monthly, and annual basis. The impact of phase change material storage on the enhancement of the overall system performance during the charging and discharging modes was also evaluated. The annual organic Rankine cycle efficiency, system efficiency, and net power output were observed to be 12.16%, 9.38%, and 26.8 kW, respectively. The spring and autumn seasons showed better performance of the phase change material storage system compared to the summer and winter seasons. The rise in working fluid temperature, the fall in phase change material temperature, and the amount of heat stored by the thermal storage were found to be at a maximum in September, while their values became a minimum in February.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2605
Author(s):  
Alicia Crespo ◽  
Gabriel Zsembinszki ◽  
David Vérez ◽  
Emiliano Borri ◽  
Cèsar Fernández ◽  
...  

In this study, a thermal energy storage tank filled with commercial phase change material flat slabs is investigated. The tank provides heat at around 15 °C to the evaporator of a seasonal thermal energy storage system developed under the EU-funded project SWS-Heating. A 2D numerical model of the phase changed material storage tank based on the finite control volume approach was developed and validated with experimental data. Based on the validated model, an optimization was performed to identify the number, type and configuration of slabs. The final goal of the phase change material tank model is to be implemented into the whole generic heating system model. A trade-off between results’ accuracy and computational time of the phase change material model is needed. Therefore, a comparison between a 2D implicit and 2D explicit scheme of the model was performed. The results showed that using an explicit scheme instead of an implicit scheme with a reasonable number of nodes (15 to 25) in the heat transfer fluid direction allowed a considerable decrease in the computational time (7 times for the best case) with only a slight reduction in the accuracy in terms on mean average percentage error (0.44%).


Sign in / Sign up

Export Citation Format

Share Document