Bisection Method for Measuring Integral Nonlinearity of Precision Thermometry Bridges

Author(s):  
Aleksandr Mikhal ◽  
Zygmunt L. Warsza
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1382
Author(s):  
Xiaoying Deng ◽  
Huazhang Li ◽  
Mingcheng Zhu

Based on the idea of bisection method, a new structure of All-Digital Phased-Locked Loop (ADPLL) with fast-locking is proposed. The structure and locking method are different from the traditional ADPLLs. The Control Circuit consists of frequency compare module, mode-adjust module and control module, which is responsible for adjusting the frequency control word of digital-controlled-oscillator (DCO) by Bisection method according to the result of the frequency compare between reference clock and restructure clock. With a high frequency cascade structure, the DCO achieves wide tuning range and high resolution. The proposed ADPLL was designed in SMIC 180 nm CMOS process. The measured results show a lock range of 640-to-1920 MHz with a 40 MHz reference frequency. The ADPLL core occupies 0.04 mm2, and the power consumption is 29.48 mW, with a 1.8 V supply. The longest locking time is 23 reference cycles, 575 ns, at 1.92 GHz. When the ADPLL operates at 1.28 GHz–1.6 GHz, the locking time is the shortest, only 9 reference cycles, 225 ns. Compared with the recent high-performance ADPLLs, our design shows advantages of small area, short locking time, and wide tuning range.


2021 ◽  
Vol 23 (07) ◽  
pp. 858-866
Author(s):  
Gauri Thakur ◽  
◽  
J.K. Saini ◽  

In numerical analysis, methods for finding roots play a pivotal role in the field of many real and practical applications. The efficiency of numerical methods depends upon the convergence rate (how fast the particular method converges). The objective of this study is to compare the Bisection method, Newton-Raphson method, and False Position Method with their limitations and also analyze them to know which of them is more preferred. Limitations of these methods have allowed presenting the latest research in the area of iterative processes for solving non-linear equations. This paper analyzes the field of iterative methods which are developed in recent years with their future scope.


2020 ◽  
Vol 183 ◽  
pp. 109912
Author(s):  
Manohar Singh ◽  
Vasantha Kumar Rajendran ◽  
Jeewan Chandra Pandey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document