scholarly journals A Novel Fast-Locking ADPLL Based on Bisection Method

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1382
Author(s):  
Xiaoying Deng ◽  
Huazhang Li ◽  
Mingcheng Zhu

Based on the idea of bisection method, a new structure of All-Digital Phased-Locked Loop (ADPLL) with fast-locking is proposed. The structure and locking method are different from the traditional ADPLLs. The Control Circuit consists of frequency compare module, mode-adjust module and control module, which is responsible for adjusting the frequency control word of digital-controlled-oscillator (DCO) by Bisection method according to the result of the frequency compare between reference clock and restructure clock. With a high frequency cascade structure, the DCO achieves wide tuning range and high resolution. The proposed ADPLL was designed in SMIC 180 nm CMOS process. The measured results show a lock range of 640-to-1920 MHz with a 40 MHz reference frequency. The ADPLL core occupies 0.04 mm2, and the power consumption is 29.48 mW, with a 1.8 V supply. The longest locking time is 23 reference cycles, 575 ns, at 1.92 GHz. When the ADPLL operates at 1.28 GHz–1.6 GHz, the locking time is the shortest, only 9 reference cycles, 225 ns. Compared with the recent high-performance ADPLLs, our design shows advantages of small area, short locking time, and wide tuning range.

2012 ◽  
Vol 256-259 ◽  
pp. 2373-2378
Author(s):  
Wu Shiung Feng ◽  
Chin I Yeh ◽  
Ho Hsin Li ◽  
Cheng Ming Tsao

A wide-tuning range voltage-controlled oscillator (VCO) with adjustable ground-plate inductor for ultra-wide band (UWB) application is presented in this paper. The VCO was implemented by standard 90nm CMOS process at 1.2V supply voltage and power consumption of 6mW. The tuning range from 13.3 GHz to 15.6 GHz with phase noise between -99.98 and -115dBc/Hz@1MHz is obtained. The output power is around -8.7 to -9.6dBm and chip area of 0.77x0.62mm2.


2019 ◽  
Vol 28 (14) ◽  
pp. 1950242
Author(s):  
Omar Faruqe ◽  
Md Tawfiq Amin

This paper presents a varactorless tunable active inductor-based voltage controlled oscillator (VCO) in 90[Formula: see text]nm CMOS process. The proposed VCO yields a wide tuning range of 116% with an output frequency of 1.19–4.46[Formula: see text]GHz for the tuning voltage of 0.3–1.5[Formula: see text]V. It consumes a low dc power ranging from 2.44[Formula: see text]mW to 4.79[Formula: see text]mW for the specified tuning range. The variation of phase noise ranges from [Formula: see text][Formula: see text]dBc/Hz to [Formula: see text][Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset with the change of tuning voltage as well as tuning frequency. The proposed varactorless VCO has a maximum Figure of Merit (FOM) of [Formula: see text][Formula: see text]dBc/Hz with a differential output power of 1.8[Formula: see text]dBm at tuning voltage of 0.7[Formula: see text]V. The elimination of varactor which abates the silicon area consumption and the minimization of the variation of performance parameters are the special outcomes of the proposed active inductor-based VCO. Comparing the performance parameters such as power consumption, FOM and tuning range, the proposed design outperforms most of the cited designs.


2015 ◽  
Vol 25 (2) ◽  
pp. 115-117 ◽  
Author(s):  
Yu-Hsin Chang ◽  
Yen-Chung Chiang ◽  
Ching-Yuan Yang

Sign in / Sign up

Export Citation Format

Share Document