Diversity and Ecology of Fungal Assemblages Present in Lakes of Antarctica

2019 ◽  
pp. 69-97 ◽  
Author(s):  
Mayara Baptistucci Ogaki ◽  
Rosemary Vieira ◽  
Juan Manuel Lírio ◽  
Carlos Augusto Rosa ◽  
Luiz Henrique Rosa
Keyword(s):  
2018 ◽  
Vol 435 (1-2) ◽  
pp. 81-93 ◽  
Author(s):  
Yanfei Sun ◽  
Yuqing Zhang ◽  
Wei Feng ◽  
Shugao Qin ◽  
Zhen Liu

2021 ◽  
Author(s):  
Luiz Henrique Rosa ◽  
Otávio Henrique Bezerra Pinto ◽  
Lívia Costa Coelho ◽  
Peter Convey ◽  
Micheline Carvalho-Silva ◽  
...  

Abstract We evaluated fungal and bacterial diversity in an established moss carpet on King George Island, Antarctica, affected by ‘fairy ring’ disease using metabarcoding. These microbial communities were assessed through the main stages of the disease. A total of 127 fungal and 706 bacterial taxa were assigned. The phylum Ascomycota dominated the fungal assemblages, followed by Basidiomycota, Rozellomycota, Chytridiomycota, Mortierellomycota and Monoblepharomycota. The fungal community displayed high indices of diversity, richness and dominance, which increased from healthy through infected to dead moss samples. Bacterial diversity and richness were greatest in healthy moss and least within the infected fairy ring. Chalara sp. 1, Alpinaria sp., Helotiaceae sp. 2, Chaetothyriales sp. 1, Ascomycota sp. 1, Rozellomycota sp. and Fungi sp. were most abundant within the fairy ring samples. A range of fungal taxa were more abundant in dead rather than healthy or fairy ring moss samples. The dominant prokaryotic phyla were Actinobacteriota, Proteobacteria, Bacteroidota and Cyanobacteria. The taxon Cyanobacteriia sp., whilst consistently dominant, were less abundant in fairy ring samples. Microbacteriaceae sp. and Chloroflexi sp. were the most abundant taxa within the fairy rings. Our data confirmed the presence and abundance of a range of plant pathogenic fungi, supporting the hypothesis that the disease is linked with multiple fungal taxas. Further studies are required to characterise the interactions between plant pathogenic fungi and their host Antarctic mosses. Monitoring the dynamics of mutualist, phytopathogenic and decomposer microorganisms associated with moss carpets may provide bioindicators of moss health.


2020 ◽  
Vol 10 (15) ◽  
pp. 5322
Author(s):  
Nopadol Precha ◽  
Wissanupong Kliengchuay ◽  
Cheolwoon Woo ◽  
Naomichi Yamamoto ◽  
Kraichat Tantrakarnapa

Southern Thailand suffers from floods due to heavy rainfalls every year. Post-flood increases in indoor fungi are a public health concern. Here, we investigated fungal assemblages on indoor surfaces with visible mold growth in homes after the 2016 flood disaster in Trang Province in Southern Thailand, using swab sampling followed by high-throughput DNA sequencing of the fungal internal transcribed spacer 1 region. The most abundant phyla detected were Ascomycota and Basidiomycota, with respective mean relative abundances of 87% and 13%. The dominant genera and their mean relative abundances were Leptospora (12.0%), Cystobasidium (7.7%), and Pyrenochaetopsis (6.5%). P-tests showed that indoor visible fungal assemblages in flooded homes in Thailand were significantly different from those in the non-flooded mold-laden homes observed in our previous study in South Korea. We detected 20 genera that contain species that can induce type I allergies, including Alternaria (3.8%) and Trichoderma (4.0%). Genera related to infectious, melanized, and toxigenic fungi were also detected. Indoor fungal measurements gathered using a DNA-based approach revealed fungal communities in homes in Thailand and provide important information about the potential health risks. Future research should examine the fungal infections and allergies that might be caused by flood disasters in less well studied tropical countries.


2019 ◽  
Vol 42 (1) ◽  
pp. 50-74 ◽  
Author(s):  
R. Chang ◽  
T.A. Duong ◽  
S.J. Taerum ◽  
M.J. Wingfield ◽  
X. Zhou ◽  
...  

Ips typographus (Coleoptera, Scolytinae) is a spruce-infesting bark beetle that occurs throughout Europe and Asia. The beetle can cause considerable damage, especially when colonized trees are stressed and beetle populations increase. Although some studies have shown that populations of I. typographus in Europe, China and Japan are genetically distinct, these populations are biologically similar, including a strong association with ophiostomatoid fungi. To date, only two Leptographium spp. have been reported from the beetle in China, while 40 species have been reported from Europe and 13 from Japan. The aims of this study were to identify the ophiostomatoid fungal associates of I. typographus in north-eastern China, and to determine whether the fungal assemblages reflect the different geographical populations of the beetle. Field surveys in Jilin and Heilongjiang provinces yielded a total of 1046 fungal isolates from 145 beetles and 178 galleries. Isolates were grouped based on morphology and representatives of each group were identified using DNA sequences of the ribosomal LSU, ITS, β-tubulin, calmodulin and elongation factor 1-α gene regions. A total of 23 species of ophiostomatoid fungi were identified, including 12 previously described species and 11 novel species, all of which are described here. The dominant species were Ophiostoma bicolor, Leptographium taigense and Grosmannia piceiperda D, representing 40.5 %, 27.8 % and 17.8 % of the isolates, respectively. Comparisons of species from China, Europe and Japan are complicated by the fact that some of the European and all the Japanese species were identified based only on morphology. However, assuming that those identifications are correct, five species were shared between Europe, Japan and China, two species were shared between China and Japan, five between Europe and China, and two between Europe and Japan. Consequently, Ips typographus populations in these different geographic areas have different fungal assemblages, suggesting that the majority of these beetle-associations are promiscuous. The results also suggested that the symbionts of the bark beetle do not reflect the population structures of the beetle. The use of fungal symbiont assemblages to infer population structures and invasion history of its vectors should thus be interpreted with circumspection.


2020 ◽  
Author(s):  
Karen J. Vanderwolf ◽  
Lewis J. Campbell ◽  
Tony L. Goldberg ◽  
David S. Blehert ◽  
Jeffrey M. Lorch

2016 ◽  
Vol 8 (2) ◽  
pp. 235-238 ◽  
Author(s):  
Thomas Charles Jeffries ◽  
Nathalie J. Curlevski ◽  
Mark Vincent Brown ◽  
Daniel P. Harrison ◽  
Martina A. Doblin ◽  
...  

Extremophiles ◽  
2020 ◽  
Vol 24 (5) ◽  
pp. 749-758
Author(s):  
Puja Gupta ◽  
Jyoti Vakhlu ◽  
Yash Pal Sharma ◽  
Madangchanok Imchen ◽  
Ranjith Kumavath

2012 ◽  
Vol 58 (10) ◽  
pp. 1202-1211 ◽  
Author(s):  
Luiz H. Rosa ◽  
Nurhayat Tabanca ◽  
Natascha Techen ◽  
Zhiqiang Pan ◽  
David E. Wedge ◽  
...  

The endophytic fungal assemblages associated with Smallanthus sonchifolius (Poepp.) H. Rob. and Smallanthus uvedalius (L.) Mack. ex Small growing in vitro autotrophic cultures and in the greenhouse were identified and evaluated for their ability to produce bioactive compounds. A total of 25 isolates were recovered that were genetically closely related to species of the genera Bionectria , Cladosporium , Colletotrichum , Fusarium , Gibberella , Hypocrea , Lecythophora , Nigrospora , Plectosphaerella , and Trichoderma . The endophytic assemblages of S. sonchifolius presented a greater diversity than the group isolated from S. uvedalius and demonstrated the presence of dominant generalist fungi. Extracts of all fungi were screened against the fungal plant pathogens. Ten extracts (41.6%) displayed antifungal activities; some of them had a broad antifungal activity. The phylotypes Lecythophora sp. 1, Lecythophora sp. 2, and Fusarium oxysporum were isolated from in vitro autotrophic cultures and displayed antifungal activity. The presence of bioactive endophytic fungi within S. sonchifolius and S. uvedalius suggests an ecological advantage against pathogenic attacks. This study revealed reduced numbers of endophytes in association with both Smallanthus species in controlled cultivation conditions compared with the endophytic communities of hosts collected in the wild environments. Even as reduced endophytic communities, these fungi continue to provide chemical protection for the host.


Sign in / Sign up

Export Citation Format

Share Document