Genetically Modified Sugarcane for Biofuels Production: Status and Perspectives of Conventional Transgenic Approaches, RNA Interference, and Genome Editing for Improving Sugarcane for Biofuels

2019 ◽  
pp. 67-96 ◽  
Author(s):  
Muhammad Tahir Khan ◽  
Imtiaz Ahmed Khan ◽  
Shafquat Yasmeen
Biomeditsina ◽  
2019 ◽  
pp. 12-33
Author(s):  
E. M. Koloskova ◽  
V. N. Karkischenko ◽  
V. A. Yezersky ◽  
N. V. Petrova ◽  
S. V. Maksimenko ◽  
...  

With the advent of endonuclease methods of genome editing, particularly CRISPR/Cas9, it has become possible to obtain genetically modified rabbits by microinjection of zygotes. These highly effective human disease models can be used for various purposes. The present review aims to consider modern achievements in the creation of rabbit biomodels of human diseases using the technologies of genetic editing. It is concluded that Russian laboratories should intensify research in the development of genetically modified rabbits that can be used for various biomedical studies and biomodelling.


2015 ◽  
Vol 27 (1) ◽  
pp. 108
Author(s):  
H. Matsunari ◽  
M. Watanabe ◽  
K. Nakano ◽  
A. Uchikura ◽  
Y. Asano ◽  
...  

Genome editing technologies have been used as a powerful strategy for the generation of genetically modified pigs. We previously developed genetically modified clone pigs with organogenesis-disabled phenotypes, as well as pigs exhibiting diseases with similar features to those of humans. Here, we report the production efficiency of various gene knockout cloned pigs from somatic cells that were genetically modified using zinc finger nucleases (ZFN) or transcription activator-like effector nucleases (TALEN). The ZFN- or TALEN-encoding mRNAs, which targeted 7 autosomal or X-linked genes, were introduced into porcine fetal fibroblast cells using electroporation. Clonal cell populations carrying induced mutations were selected after limiting dilution. The targeted portion of the genes was amplified using PCR, followed by sequencing and mutation analysis. Among the collected knockout cell colonies, cells showing good proliferation and morphology were selected and used for somatic cell nuclear transfer (SCNT). In vitro-matured oocytes were obtained from porcine cumulus-oocyte complexes cultured in NCSU23-based medium and were used to obtain recipient oocytes for SCNT after enucleation. SCNT was performed as reported previously (Matsunari et al. 2008). The cloned embryos were cultured for 7 days in porcine zygote medium (PZM)-5 to assess their developmental ability. Cloned embryos were transplanted into the oviduct or uterus of oestrus-synchronized recipient gilts to evaluate their competence to develop to fetuses or piglets. Cloned embryos reconstructed with 7 types of knockout cells showed equal development to blastocysts compared with those derived from the wild-type cells (54.5–83.3% v. 60.7%). Our data (Table 1) demonstrated that the reconstructed embryos derived from knockout cells could efficiently give rise to cloned offspring regardless of the type of genome editing methodology (i.e. ZFN or TALEN). Table 1.Production efficiency of gene knockout cloned pigs using genome editing This study was supported by JST, ERATO, the Nakauchi Stem Cell and Organ Regeneration Project, JST, CREST, Meiji University International Institute for Bio-Resource Research (MUIIBR), and JSPS KAKENHI Grant Number 26870630.


2012 ◽  
Vol 39 (6) ◽  
pp. 269-274 ◽  
Author(s):  
Yonglun Luo ◽  
Emil Kofod-Olsen ◽  
Rikke Christensen ◽  
Charlotte Brandt Sørensen ◽  
Lars Bolund

2016 ◽  
Vol 2016 (2) ◽  
pp. pdb.prot090704 ◽  
Author(s):  
Jorge Henao-Mejia ◽  
Adam Williams ◽  
Anthony Rongvaux ◽  
Judith Stein ◽  
Cynthia Hughes ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 858
Author(s):  
Fernando G. Noriega ◽  
Marcela Nouzova

The juvenile hormones (JHs) are a group of sesquiterpenoids synthesized by the corpora allata. They play critical roles during insect development and reproduction. To study processes that are controlled by JH, researchers need methods to identify and quantify endogenous JHs and tools that can be used to increase or decrease JH titers in vitro and in vivo. The lipophilic nature of JHs, coupled with the low endogenous titers, make handling and quantification challenging. JH titers in insects can easily be increased by the topical application of JH analogs, such as methoprene. On the other hand, experimentally reducing JH titers has been more difficult. New approaches to modulate JH homeostasis have been established based on advances in RNA interference and CRISPR/Cas9-based genome editing. This review will summarize current advances in: (1) the detection and quantification of JHs from insect samples; (2) approaches to manipulating JH titers; and (3) next-generation tools to modulate JH homeostasis.


ChemTexts ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sabrina Schulze ◽  
Michael Lammers

We regret the incorrect designation of the site attacking the 3′-phosphotyrosine as 3′-hydroxyl group in the process following the formation of the Holliday junction intermediate to complete Cre/loxP mediated recombination of homologous DNA fragments.


2021 ◽  
Vol 2 (1) ◽  
pp. 20-28
Author(s):  
Yaseen Ismael Imran ◽  
Ibrahim Abdulla Ahmed ◽  
Ahmed Ali Muhawesh

Saccharomyces cerevisiae is an important yeast has been exploited for a long time to produce alcohol or bread. Moreover, genetically engineered S. cerevisiae cells continue to be used as cell factories for production of biofuels, pharmaceutical proteins and food additives. Genetically modified strain of S. cerevisiae created using traditional methods is laborious and time consuming. Recently, originally an immune system in archaea and bacteria, Clustered regularly interspaced short palindromic repeats “CRISPR” and CRISPR-associated “Cas” have been used exploited  as a flexible tool for genome editing. Until now, this tool has been applied to many organisms including yeast. Here, we review the importance of S. cerevisiae as an industrial platform and the use of CRISPR/Cas system and its applications in research and industry of this yeast.  


Sign in / Sign up

Export Citation Format

Share Document