Heterogeneities of the Earth’s Inner Core Boundary from Differential Measurements of PKiKP and PcP Seismic Phases

Author(s):  
Dmitry Krasnoshchekov ◽  
Vladimir Ovtchinnikov
Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 202-205
Author(s):  
Richard G. Kraus ◽  
Russell J. Hemley ◽  
Suzanne J. Ali ◽  
Jonathan L. Belof ◽  
Lorin X. Benedict ◽  
...  

Terapascal iron-melting temperature The pressure and temperature conditions at which iron melts are important for terrestrial planets because they determine the size of the liquid metal core, an important factor for understanding the potential for generating a radiation-shielding magnetic field. Kraus et al . used laser-driven shock to determine the iron-melt curve up to a pressure of 1000 gigapascals (see the Perspective by Zhang and Lin). This value is about three times that of the Earth’s inner core boundary. The authors found that the liquid metal core lasted the longest for Earth-like planets four to six times larger in mass than the Earth. —BG


2019 ◽  
Vol 488 (4) ◽  
pp. 434-438
Author(s):  
D. N. Krasnoshchekov ◽  
V. M. Ovtchinnikov ◽  
O. A. Usoltseva

Analysis of PKIIKP waves reflected off the inner surface of the solid core boundary and recorded close to the antipode indicates the shear wave velocity in its top can be by 10-60% below 3.5 km/s envisaged by standard models of the Earth.


2019 ◽  
Vol 124 (11) ◽  
pp. 10954-10967 ◽  
Author(s):  
Youjun Zhang ◽  
Peter Nelson ◽  
Nick Dygert ◽  
Jung‐Fu Lin

2015 ◽  
Vol 7 (4) ◽  
pp. 3817-3841
Author(s):  
M. Yoshida

Abstract. An east-west hemispherically asymmetric structure for Earth's inner core has been suggested by various seismological evidence, but its origin is not clearly understood. Here, to investigate the possibility of an "endogenic origin" for the degree-one thermal/mechanical structure of the inner core, I performed new numerical simulations of thermal convection in the growing inner core. A setup value that controls the viscosity contrast between the inner core boundary and the interior of the inner core, ΔηT, was taken as a free parameter. Results show that the degree-one structure only appeared for a limited range of ΔηT; such a scenario may be possible but is not considered probable for the real Earth. The degree-one structure may have been realized by an "exogenous factor" due to the planetary-scale thermal coupling among the lower mantle, the outer core, and the inner core, not by an endogenic factor due to the internal rheological heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document