Putting the STEAM in the River: Potential Transformative Roles of Science, Technology, Engineering, Arts, and Mathematics in School District Culture, Organization, Systems, and Learning Environments

Author(s):  
John Puglisi ◽  
Beth V. Yeager
Author(s):  
Ellen Hamilton-Ford ◽  
Jeffrey D. Herron

The objective of this chapter is to provide an overview of research in the convergence of environmental education and science, technology, engineering, and mathematics (E-STEM) education models through a values-based framework for nature. An argument for the interconnectedness of environmental education and STEM programs is presented. A further argument presented that nature-based learning environments engage children in E-STEM. Lastly, an exploration of research suggests how various pedagogical practices incorporate and facilitate the E-STEM paradigm to prepare young children for 21st century workforce that can solve large, complex problems in an information and service-based economy.


2018 ◽  
Vol 7 (2) ◽  
pp. 148-153 ◽  
Author(s):  
Anni Reinking ◽  
Barbara Martin

The 2010 President’s Council of Advisors on Science and Technology indicated that there was a need to provide individuals with strong STEM (Science, Technology, Engineering, and Mathematics) backgrounds in order to be a competitive country internationally. Additionally, it has been found that there is a gender gap in STEM related fields. Therefore, this article describes theories related to the gender gap in the STEM field and ways to engage girls in STEM related fields in order to close the gender gap. The researchers of this study did extensive research to review the current literature, condense and summarize the findings from various studies, and provide steps for educators to engage in that will create an early atmosphere of positive learning environments for girls to be curious about STEM concepts.  


2020 ◽  
Vol 12 (9) ◽  
pp. 152
Author(s):  
Gregor Milicic ◽  
Sina Wetzel ◽  
Matthias Ludwig

Due to its links to computer science (CS), teaching computational thinking (CT) often involves the handling of algorithms in activities, such as their implementation or analysis. Although there already exists a wide variety of different tasks for various learning environments in the area of computer science, there is less material available for CT. In this article, we propose so-called Generic Tasks for algorithms inspired by common programming tasks from CS education. Generic Tasks can be seen as a family of tasks with a common underlying structure, format, and aim, and can serve as best-practice examples. They thus bring many advantages, such as facilitating the process of creating new content and supporting asynchronous teaching formats. The Generic Tasks that we propose were evaluated by 14 experts in the field of Science, Technology, Engineering, and Mathematics (STEM) education. Apart from a general estimation in regard to the meaningfulness of the proposed tasks, the experts also rated which and how strongly six core CT skills are addressed by the tasks. We conclude that, even though the experts consider the tasks to be meaningful, not all CT-related skills can be specifically addressed. It is thus important to define additional tasks for CT that are detached from algorithms and programming.


2017 ◽  
Vol 15 (4) ◽  
pp. 23 ◽  
Author(s):  
Annette Shtivelband ◽  
Lauren Riendeau ◽  
Robert Jakubowski

A growing body of evidence is showing that youth develop their interests in science, technology, engineering, and mathematics (STEM) through participation in activities across the informal and free-choice learning environments found in libraries.1 Many libraries have joined a national movement in which libraries deliver STEM programming to youth.2 Public libraries are a place for STEM learning,3 and children’s librarians are uniquely positioned to promote a love of STEM learning among youth through such programs. The benefits of STEM programming in public libraries are promising.4 For example, participating youth can become proficient in key STEM content and skills, such as critical thinking and engineering design processes.It is critical to youth and community success that these existing STEM programs continue to grow and expand. Public libraries are an ideal location for these programs. They provide a familiar and trusted learning environment for diverse and underserved families.5 Providing children’s librarians with a “six strand” framework will help guide the successful expansion of these fun and engaging STEM programs.6 This article provides specific recommendations and resources to help prepare and support librarians feel in adopting and implementing STEM in their programming.


2021 ◽  
Vol 13 (3) ◽  
pp. 1179
Author(s):  
Catalina Rus-Casas ◽  
M.Dolores La Rubia ◽  
Dolores Eliche-Quesada ◽  
Gabino Jiménez-Castillo ◽  
Juan D. Aguilar-Peña

This work describes an educational experience in which personal learning environments (PLEs) were created as a tool for the acquisition of subject contents in the science, technology, engineering, and mathematics (STEM) areas. For this, the same methodology was developed for different subjects in order to teach the use of some digital tools, learn about the concepts related to the PLE, and apply the PLE to educational content promoting sustainable learning. Two questionnaires were designed to obtain information about the tools, activities, and subjects. The results of the questionnaires were analyzed using the Kaiser–Meyer–Olkin test and Pearson’s correlation. Then, several factors and the relationships between them were defined. In addition, this paper shows that because the PLE is based on a learning model in which the learner is the protagonist, its use is linked to sustainable learning. Therefore, the use of PLEs allows the development of the competences of “collaborative work” and “information management and organization”, which are both related to sustainable learning. In addition, the use of PLEs promotes understanding of the subjects and academic results in the subjects.


2016 ◽  
Vol 15 (2) ◽  
pp. 55-65 ◽  
Author(s):  
Lonneke Dubbelt ◽  
Sonja Rispens ◽  
Evangelia Demerouti

Abstract. Women have a minority position within science, technology, engineering, and mathematics and, consequently, are likely to face more adversities at work. This diary study takes a look at a facilitating factor for women’s research performance within academia: daily work engagement. We examined the moderating effect of gender on the relationship between two behaviors (i.e., daily networking and time control) and daily work engagement, as well as its effect on the relationship between daily work engagement and performance measures (i.e., number of publications). Results suggest that daily networking and time control cultivate men’s work engagement, but daily work engagement is beneficial for the number of publications of women. The findings highlight the importance of work engagement in facilitating the performance of women in minority positions.


Author(s):  
Jacqueline D. Spears ◽  
Ruth A. Dyer ◽  
Suzanne E. Franks ◽  
Beth A. Montelone

Sign in / Sign up

Export Citation Format

Share Document