Multi-scale Feature Fusion Single Shot Object Detector Based on DenseNet

Author(s):  
Minghao Zhai ◽  
Junchen Liu ◽  
Wei Zhang ◽  
Chen Liu ◽  
Wei Li ◽  
...  
2019 ◽  
Vol 11 (5) ◽  
pp. 594 ◽  
Author(s):  
Shuo Zhuang ◽  
Ping Wang ◽  
Boran Jiang ◽  
Gang Wang ◽  
Cong Wang

With the rapid advances in remote-sensing technologies and the larger number of satellite images, fast and effective object detection plays an important role in understanding and analyzing image information, which could be further applied to civilian and military fields. Recently object detection methods with region-based convolutional neural network have shown excellent performance. However, these two-stage methods contain region proposal generation and object detection procedures, resulting in low computation speed. Because of the expensive manual costs, the quantity of well-annotated aerial images is scarce, which also limits the progress of geospatial object detection in remote sensing. In this paper, on the one hand, we construct and release a large-scale remote-sensing dataset for geospatial object detection (RSD-GOD) that consists of 5 different categories with 18,187 annotated images and 40,990 instances. On the other hand, we design a single shot detection framework with multi-scale feature fusion. The feature maps from different layers are fused together through the up-sampling and concatenation blocks to predict the detection results. High-level features with semantic information and low-level features with fine details are fully explored for detection tasks, especially for small objects. Meanwhile, a soft non-maximum suppression strategy is put into practice to select the final detection results. Extensive experiments have been conducted on two datasets to evaluate the designed network. Results show that the proposed approach achieves a good detection performance and obtains the mean average precision value of 89.0% on a newly constructed RSD-GOD dataset and 83.8% on the Northwestern Polytechnical University very high spatial resolution-10 (NWPU VHR-10) dataset at 18 frames per second (FPS) on a NVIDIA GTX-1080Ti GPU.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1426
Author(s):  
Chuanyang Liu ◽  
Yiquan Wu ◽  
Jingjing Liu ◽  
Jiaming Han

Insulator detection is an essential task for the safety and reliable operation of intelligent grids. Owing to insulator images including various background interferences, most traditional image-processing methods cannot achieve good performance. Some You Only Look Once (YOLO) networks are employed to meet the requirements of actual applications for insulator detection. To achieve a good trade-off among accuracy, running time, and memory storage, this work proposes the modified YOLO-tiny for insulator (MTI-YOLO) network for insulator detection in complex aerial images. First of all, composite insulator images are collected in common scenes and the “CCIN_detection” (Chinese Composite INsulator) dataset is constructed. Secondly, to improve the detection accuracy of different sizes of insulator, multi-scale feature detection headers, a structure of multi-scale feature fusion, and the spatial pyramid pooling (SPP) model are adopted to the MTI-YOLO network. Finally, the proposed MTI-YOLO network and the compared networks are trained and tested on the “CCIN_detection” dataset. The average precision (AP) of our proposed network is 17% and 9% higher than YOLO-tiny and YOLO-v2. Compared with YOLO-tiny and YOLO-v2, the running time of the proposed network is slightly higher. Furthermore, the memory usage of the proposed network is 25.6% and 38.9% lower than YOLO-v2 and YOLO-v3, respectively. Experimental results and analysis validate that the proposed network achieves good performance in both complex backgrounds and bright illumination conditions.


2021 ◽  
pp. 102156
Author(s):  
Xiaokun Liang ◽  
Na Li ◽  
Zhicheng Zhang ◽  
Jing Xiong ◽  
Shoujun Zhou ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jingfang Yang ◽  
Bochang Zou ◽  
Huadong Qiu ◽  
Zhi Li

Sign in / Sign up

Export Citation Format

Share Document