scholarly journals Ice Cores and Emulation: Learning More About Past Ice Sheet Shapes

Author(s):  
Fiona Turner ◽  
Richard Wilkinson ◽  
Caitlin Buck ◽  
Julie Jones ◽  
Louise Sime
Keyword(s):  
Author(s):  
H.-C. Hansson ◽  
E. Swietlicki ◽  
N.P.-O. Larsson ◽  
S.J. Johnsen

2021 ◽  
Author(s):  
Maria Hoerhold ◽  
Thomas Münch ◽  
Stefanie Weißbach ◽  
Sepp Kipfstuhl ◽  
Bo Vinther ◽  
...  

<p>Climate variability of the Arctic region has been investigated by means of temperature reconstructions based on proxies from various climate archives around the Arctic, compiled over the last 2000a in the so called Arctic2k record. However, the representativeness of the Arctic2k reconstruction for central Greenland remains unclear, since only a few ice cores have been included in the reconstruction, and observations from the Greenland Ice Sheet (GIC) report ambiguous warming trends for the end of the 20th and the beginning of the 21st century which are not displayed by Arctic2k. Today, the GIC experiences periods with temperatures close to or above the freezing point at high elevations, area-wide melting and mass loss. In order to assess the recent warming as signature of global climate change, records of past climate changes with appropriate temporal and spatial coverage can serve as a benchmark for naturally driven climate variability. Instrumental records for Greenland are short and geographically sparse, and existing temperature reconstructions from single ice cores are noisy, leading to an inconclusive assessment of the recent warming for Greenland.</p><p>Here, we provide a Greenland firn-core stack covering the time span of the last millennium until the first decade of the 21<sup>st </sup>century in unprecedented quality by re-drilling as well as analyzing 16 existing firn core sites. We find a strong decadal to bi-decadal natural variability in the record, and, while the record exhibits several warming events with trends that show a similar amplitude as the recent one, we find that the recent absolute values of stable oxygen isotope composition are unprecedented for the last 1000 years.</p><p> </p><p>Comparing our Greenland record with the Arctic 2k temperature reconstruction shows that the correlation between the two records changes throughout the last millennium. While in the periods of 1200-1300 and 1400-1650 CE the records correlate positively, between 1300 and 1400 and 1650-1700 CE shorter periods with negative correlation are found. Since then the correlation is characterized by alternation between positive and zero correlation, with a drop towards negative values at the end of the 20<sup>th</sup> century. Including re-analysis data, we hypothesize that the climate on top of the GIC was decoupled from the surrounding Arctic for the last decades, leading to the observed mismatch in observations of warming trends.</p><p>We suggest that the recently observed Greenland temperatures are a superposition of a strong natural variability with an anthropogenic long-term trend. Our findings illustrate that global warming has reached the interior of the Greenland ice sheet, which will have implications for its surface mass balance and Greenland’s future contribution to sea level rise.</p><p>Our record complements the Arctic 2k record to a profound view on the Arctic climate variability, where regional compilations may not be representative for specific areas.</p>


2012 ◽  
Vol 8 (6) ◽  
pp. 1997-2017 ◽  
Author(s):  
J. Zumaque ◽  
F. Eynaud ◽  
S. Zaragosi ◽  
F. Marret ◽  
K. M. Matsuzaki ◽  
...  

Abstract. The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60–30 cal ka BP) provides key issues to understand the atmosphere–ocean–cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst – e.g. dinocyst – assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.


2011 ◽  
Vol 57 (206) ◽  
pp. 1017-1026 ◽  
Author(s):  
Tsutomu Uchida ◽  
Atsushi Miyamoto ◽  
Atsushi Shin’yama ◽  
Takeo Hondoh

AbstractAir-hydrate crystals store most of the ancient air contained in deep ice sheets. We carried out microscopic observations of air-hydrate crystals below 2000 m depth within the ice core from Dome Fuji, Antarctica, to obtain their number and size distributions. We found that the number density continuously decreased with depth, whereas the average size increased, in contrast to findings from shallower depths. In addition, the characteristic perturbations in both number density and average size distribution with climatic changes almost disappeared, although they are clearly observed in shallow cores. These results indicate that the air-hydrate crystals grow considerably in deeper parts of the ice sheet, and this growth is accompanied by the diffusion of air molecules in the ice. The permeation coefficient of the air molecules in the ice sheet was estimated from the geometric parameters of the air-hydrate distributions. This is the first practical evidence comparable to the previous model estimations. It allows us to evaluate the impacts of the air-molecule migration in the ice sheet on the paleoclimatic information recorded in the deep ice cores.


1979 ◽  
Vol 24 (90) ◽  
pp. 147-153 ◽  
Author(s):  
A. J. Gow ◽  
H. Kohnen

Abstract Deep cores from Byrd Station were used to calibrate an ultrasonic technique of evaluating crystal anisotropy in the Antarctic ice sheet. Velocities measured parallel (V p ↓) and perpendicular (V p →) to the vertical axis of the cores yielded data in excellent agreement with the observed c-axis fabric profile and with the in-situ P-wave velocity profile measured parallel to the bore-hole axis by Bentley. Velocity differences ΔV (ΔV = V p ↓ – V p→) in excess of 140 m s−1 for cores from below 1300 m attest to the tight clustering of c-axes of crystals about the vertical, especially in the zone 1 300-1800 m. A small but significant decline in V p ↓ with ageing of the core, as deduced from Bentley’s down-hole data, is attributed to the formation of oriented cracks that occur in the ice cores as they relax from environmental stresses. This investigation of cores from the 2164 m thick ice sheet at Byrd Station establishes the ultrasonic technique as a viable method of monitoring relaxation characteristics of drilled cores and for determining the gross trends of c-axis orientation in ice sheets. The Byrd Station data, in conjunction with Barkov’s investigation of deep cores from Vostok, East Antarctica, also indicate that crystal anisotropy in the Antarctic ice sheet is dominated by a clustering of c-axes about a vertical symmetry axis.


1988 ◽  
Vol 11 ◽  
pp. 219
Author(s):  
Shinji Mae

The Japanese Antarctic Research Expedition (JARE) has conducted glaciological studies on Mizuho Plateau since 1981. We have already reported that the ice sheet flowing from Mizuho Plateau into Shirase Glacier is thinning at a rate of about 70 cm/year and that the profile of the distribution of basal shear stress is similar to that of surging glaciers. A 5 year glaciological programme on Mizuho Plateau and in east Queen Maud Land is now being carried out and we have obtained the following new results: (1) The ice sheet in the down-stream region (where ice elevation is lower than about 2400 m) is thinning, based on measurements of horizontal and vertical flow velocity, strain-rate, the slope of the ice surface, the accumulation rate and densification of snow. (2) δ18O analysis of deep ice cores obtained at Mizuho Station (2240 m a.s.l.) and point G2 (1730 m a.s.l.) shows that δ18O increased about 200 years ago at Mizuho Station and about 400 years ago at point G2. If we can assume that the increase in δ18O is caused by the thinning of the ice sheet, then this result means that this thinning propagates to up-stream areas. (3) Radio-echo-sounding measurements on Mizuho Plateau show that the ice base in the down-stream region is wet. This supports the result described in (1), since the basal sliding due to a wet base causes ice-sheet thinning, as proposed in our previous studies. In summary, a possible explanation of ice-sheet variation on Mizuho Plateau is as follows: the thinning of the ice sheet, caused by the basal sliding due to basal ice melting, started at Shirase Glacier and has been propagating up-stream to reach its present position. A simple calculation, using flow velocities, shows that the thinning started at Shirase Glacier about 1500–2000 years ago.


1996 ◽  
Vol 23 ◽  
pp. 226-236 ◽  
Author(s):  
Philippe Huybrechts

A high-resolution, three-dimensional thermomechanical ice-sheet model, which includes isostasy, the possibility of ice-sheet expansion on the continental shelf and refined climatic parameterizations, was used to investigate the basal thermal regime of the Greenland ice sheet. The thermodynamic calculations take into account the usual terms of heat flow within the ice, a thermally active bedrock layer and all of the effects associated with changes in ice thickness and flow pattern. Basal temperature conditions are documented with respect to glacial–interracial shifts in climatic boundary conditions, both in steady state as during simulations over the last two glacial cycles using the GRIP δ180 record. It is found that the basal temperature field shows a large sensitivity in steady-state experiments but that, during a glacial cycle, basal temperature variations are strongly damped, in particular in central areas. A comparison has been made with measured data from deep ice cores and the implications are discussed.


1982 ◽  
Vol 3 ◽  
pp. 152-155 ◽  
Author(s):  
D. Jenssen ◽  
U. Radok

Total gas contents of ice cores together with temperature estimates derived from 180/160 and 2D/1H values have been used to separate topographic and climatic changes in the deposition temperature history of the ice (Raynaud 1977, Jenssen 1978). The most recent analysis (Jenssen in press) made use of two linear relationships (one purely empirical, the other established empirically but subsequently justified theoretically) to derive an algebraic expression for the change of surface temperature with ice-sheet elevation. A physical line of reasoning is presented which instead infers the climatic history from changes in the surface topography of the ice sheet. This suggests that a complete interpretation of core data must go hand in hand with ice-sheet modeling.


2016 ◽  
Vol 63 (237) ◽  
pp. 22-38 ◽  
Author(s):  
ANDREAS BORN

ABSTRACTThe full history of ice sheet and climate interactions is recorded in the vertical profiles of geochemical tracers in polar ice sheets. Numerical simulations of these archives promise great advances both in the interpretation of these reconstructions and the validation of the models themselves. However, fundamental mathematical shortcomings of existing models subject tracers to spurious diffusion, thwarting straightforward solutions. Here, I propose a new vertical discretization for ice-sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world flow of ice as a thinning of underlying layers. A new layer is added to the surface at equidistant time intervals, isochronally, thus identifying each layer uniquely by its time of deposition and age. This new approach is implemented for a two-dimensional section through the summit of the Greenland ice sheet. The ability to directly compare simulations of vertical ice cores with reconstructed data is used to find optimal model parameters from a large ensemble of simulations. It is shown that because this tuning method uses information from all times included in the ice core, it constrains ice-sheet sensitivity more robustly than a realistic reproduction of the modern ice-sheet surface.


Sign in / Sign up

Export Citation Format

Share Document