ice sheet modeling
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael E. Weber ◽  
Nicholas R. Golledge ◽  
Chris J. Fogwill ◽  
Chris S. M. Turney ◽  
Zoë A. Thomas

AbstractEmerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.


2021 ◽  
Author(s):  
Michele Petrini ◽  
Miren Vizcaino ◽  
Raymond Sellevold ◽  
Laura Muntjewerf ◽  
Sotiria Georgiou ◽  
...  

<p>Previous coupled climate-ice sheet modeling studies indicate that the warming threshold leading to multi-millennial, large-scale deglaciation of the Greenland Ice Sheet (GrIS) is in the range of 1.6-3.0 K above the pre-industrial climate. These studies either used an intermediate complexity RCM (Robinson et al. 2012) or a low resolution GCM (Gregory et al., 2020) coupled to a zero-order ISM. Here, we investigate the warming threshold and long-term response time of the GrIS using the higher-order Community Ice Sheet Model version 2 (CISM2, Lipscomb et al. 2019), forced with surface mass balance (SMB) calculated with the Community Earth System Model version 2 (CESM2, Danabasoglu et al. 2020). We use different forcing climatologies from a coupled CESM2/CISM2 simulation under high greenhouse gas forcing (Muntjewerf et al. 2020), where each climatology corresponds to a different global warming level in the range of 1-8.5 K above the pre-industrial climate. The SMB, which is calculated in CESM2 using an advanced energy balance scheme at multiple elevation classes (Muntjewerf et al. 2020), is downscaled during runtime to CISM2, thus allowing to account for the surface elevation feedback. In all the simulations the forcing is cycled until the ice sheet is fully deglaciated or has reached a new equilibrium. In a first set of simulations, we find that for a warming level higher than 5.2 K above pre-industrial the ice sheet will disappear, with the timing ranging between 2000 (+8.5 K) and 6000 years (+5.2 K). At a warming level of 2.8 K above pre-industrial, the ice loss does not exceed 2 m SLE, and most of the retreat occurs in the first 10,000 years in the south-west and central-west basins. In contrast, with a higher warming level of 3.6 K above pre-industrial as much as 7 m SLE of ice are loss in 20,000 years, with primary contributions from the western, northern and north-eastern basins. We will conclude by showing preliminary results from a second set of simulations focusing on the 2.8-3.6 K warming above pre-industrial interval.</p>


2020 ◽  
Vol 16 (6) ◽  
pp. 2183-2201
Author(s):  
Dipayan Choudhury ◽  
Axel Timmermann ◽  
Fabian Schloesser ◽  
Malte Heinemann ◽  
David Pollard

Abstract. It is widely accepted that orbital variations are responsible for the generation of glacial cycles during the late Pleistocene. However, the relative contributions of the orbital forcing compared to CO2 variations and other feedback mechanisms causing the waxing and waning of ice sheets have not been fully understood. Testing theories of ice ages beyond statistical inferences, requires numerical modeling experiments that capture key features of glacial transitions. Here, we focus on the glacial buildup from Marine Isotope Stage (MIS) 7 to 6 covering the period from 240 to 170 ka (ka: thousand years before present). This transition from interglacial to glacial conditions includes one of the fastest Pleistocene glaciation–deglaciation events, which occurred during MIS 7e–7d–7c (236–218 ka). Using a newly developed three-dimensional coupled atmosphere–ocean–vegetation–ice sheet model (LOVECLIP), we simulate the transient evolution of Northern Hemisphere and Southern Hemisphere ice sheets during the MIS 7–6 period in response to orbital and greenhouse gas forcing. For a range of model parameters, the simulations capture the evolution of global ice volume well within the range of reconstructions. Over the MIS 7–6 period, it is demonstrated that glacial inceptions are more sensitive to orbital variations, whereas terminations from deep glacial conditions need both orbital and greenhouse gas forcings to work in unison. For some parameter values, the coupled model also exhibits a critical North American ice sheet configuration, beyond which a stationary-wave–ice-sheet topography feedback can trigger an unabated and unrealistic ice sheet growth. The strong parameter sensitivity found in this study originates from the fact that delicate mass imbalances, as well as errors, are integrated during a transient simulation for thousands of years. This poses a general challenge for transient coupled climate–ice sheet modeling, with such coupled paleo-simulations providing opportunities to constrain such parameters.


2020 ◽  
Vol 14 (7) ◽  
pp. 2331-2368 ◽  
Author(s):  
Sophie Nowicki ◽  
Heiko Goelzer ◽  
Hélène Seroussi ◽  
Anthony J. Payne ◽  
William H. Lipscomb ◽  
...  

Abstract. Projection of the contribution of ice sheets to sea level change as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) takes the form of simulations from coupled ice sheet–climate models and stand-alone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea level change projections to be performed with stand-alone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice–ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 stand-alone ice sheet simulations, document the experimental framework and implementation, and present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.


2020 ◽  
Author(s):  
Maria Zeitz ◽  
Anders Levermann ◽  
Ricarda Winkelmann

Abstract. The flow of ice drives mass losses in both, the Antarctic and the Greenland Ice Sheet. The projections of possible future sea-level rise rely on numerical ice-sheet models, which solve the physics of ice flow and melt. While a number of important uncertainties have been addressed by the ice-sheet modeling community, the flow law, which is at the center of most process-based ice-sheet models, has so far been assumed certain. Unfortunately, recent studies show that the parameters in the flow law might be uncertain and different from the widely accepted standard values. Here, we use an idealized flowline setup to investigate how uncertainties in the flow law translate into uncertainties in flow-driven mass loss given a step-wise increase of surface temperatures. We find that the measured range of flow parameters can double the flow-driven mass loss within the first centuries of warming, compared to a setting with standard parameters. The spread of ice loss due to an uncertainty in flow parameters is of the same order as the increase in mass loss due to increasing surface temperatures. While this study focuses on an idealized setting in order to disentangle the effect of the flow law from other effects, it is likely that this uncertainty carries over to realistic three-dimensional simulations of Greenland and Antarctica.


2020 ◽  
Author(s):  
Dipayan Choudhury ◽  
Axel Timmermann ◽  
Fabian Schloesser ◽  
Malte Heinemann ◽  
David Pollard

Abstract. It is widely accepted that orbital variations are responsible for the generation of glacial cycles during the late Pleistocene. However, the relative contributions of the orbital forcing compared to CO2 variations and other feedback mechanisms causing the waxing and waning of ice-sheets have not been fully understood. Testing theories of ice-ages beyond statistical inferences, requires numerical modeling experiments that capture key features of glacial transitions. Here, we focus on the glacial build-up from Marine Isotope Stage (MIS) 7 to 6 covering the period from 240–170 ka (thousand years before present). This transition from interglacial to glacial conditions includes one of the fastest Pleistocene glaciation/deglaciation events which occurred during MIS 7e-7d-7c (236–218 ka). Using a newly developed three-dimensional coupled atmosphere-ocean-vegetation-ice-sheet model (LOVECLIP), we simulate the transient evolution of northern and southern hemisphere ice-sheets during the MIS 7-6 period in response to orbital and greenhouse-gas forcing. For a range of model parameters, the simulations capture the reconstructed evolution of global ice volume reasonably well. It is demonstrated that glacial inceptions are more sensitive to orbital variations, whereas terminations from deep glacial conditions need both orbital and greenhouse gas forcings to work in unison. For some parameter values, the coupled model also exhibits a critical North American ice sheet configuration, beyond which a stationary wave – ice-sheet topography feedback can trigger an unabated and unrealistic ice-sheet growth. The strong parameter sensitivity found in this study originates from the fact that delicate mass imbalances, as well as errors, are integrated during a transient simulation for thousands of years. This poses a general challenge for transient coupled climate-ice sheet modeling.


2020 ◽  
Author(s):  
Sophie Nowicki ◽  
Antony J. Payne ◽  
Heiko Goelzer ◽  
Helene Seroussi ◽  
William H. Lipscomb ◽  
...  

Abstract. Projection of the contribution of ice sheets to sea-level change as part of the Coupled Model Intercomparison Project – phase 6 (CMIP6) takes the form of simulations from coupled ice-sheet-climate models and standalone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea-level change projections to be performed with standalone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea-level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice-ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 standalone ice sheet simulations, document the experimental framework and implementation, as well as present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.


2019 ◽  
Vol 396 ◽  
pp. 819-836 ◽  
Author(s):  
Chao Chen ◽  
Leopold Cambier ◽  
Erik G. Boman ◽  
Sivasankaran Rajamanickam ◽  
Raymond S. Tuminaro ◽  
...  
Keyword(s):  

2018 ◽  
Vol 12 (10) ◽  
pp. 3085-3096 ◽  
Author(s):  
Hélène Seroussi ◽  
Mathieu Morlighem

Abstract. While a lot of attention has been given to the numerical implementation of grounding lines and basal friction in the grounding zone, little has been done about the impact of the numerical treatment of ocean-induced basal melting in this region. Several strategies are currently being employed in the ice sheet modeling community, and the resulting grounding line dynamics may differ strongly, which ultimately adds significant uncertainty to the projected contribution of marine ice sheets to sea level rise. We investigate here several implementations of basal melt parameterization on partially floating elements in a finite-element framework, based on the Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP) setup: (1) melt applied only to entirely floating elements, (2) melt applied over all elements that are crossed by the grounding line, and (3) melt integrated partially over the floating portion of a finite element using two different sub-element integration methods. All methods converge towards the same state when the mesh resolution is fine enough. However, (2) and (3) will systematically overestimate the rate of grounding line retreat in coarser resolutions, while (1) converges faster to the solution in most cases. The differences between sub-element parameterizations are exacerbated for experiments with high melting rates in the vicinity of the grounding line and for a Weertman sliding law. As most real-world simulations use horizontal mesh resolutions of several hundreds of meters at best, and high melt rates are generally present close to the grounding lines, we recommend not using (3) to avoid overestimating the rate of grounding line retreat and to carefully assess the impact of mesh resolution and sub-element melt parameterizations on all simulation results.


Sign in / Sign up

Export Citation Format

Share Document