Architecture for Demand Prediction for Production Optimization: A Case Study

Author(s):  
Inabel Karina Mazón Quinde ◽  
Sang Guun Yoo ◽  
Rubén Arroyo ◽  
Geovanny Raura
2001 ◽  
Author(s):  
Albertus Retnanto ◽  
Ben Weimer ◽  
I Nyoman Hari Kontha ◽  
Heru Triongko ◽  
Azriz Azim ◽  
...  

2014 ◽  
Author(s):  
Asmau Nayagawa ◽  
Kefe Amrasa ◽  
Olukayode Ayeni ◽  
Abdul-Wahab Sa'ad ◽  
Olaseni Osho

2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGRs as follows;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model can be used to propose the best tie-in location of future wells in addition to providing first-pass flow assurance indications throughout the field's life and under different network configurations. The model enabled the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime.


2014 ◽  
Author(s):  
Hector Aguilar ◽  
Aref Almarzooqi ◽  
Tarek Mohamed El Sonbaty ◽  
Leigber Villarreal

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Xiaomei Xu ◽  
Zhirui Ye ◽  
Jin Li ◽  
Mingtao Xu

Bicycle-sharing systems (BSSs) have become a prominent feature of the transportation network in many cities. Along with the boom of BSSs, cities face the challenge of bicycle unavailability and dock shortages. It is essential to conduct rebalancing operations, the success of which largely depend on users’ demand prediction. The objective of this study is to develop users’ demand prediction models based on the rental data, which will serve rebalancing operations. First, methods to collect and process the relevant data are presented. Bicycle usage patterns are then examined from both trip-based aspect and station-based aspect to provide some guidance for users’ demand prediction. After that, the methodology combining cluster analysis, a back-propagation neural network (BPNN), and comparative analysis is proposed to predict users’ demand. Cluster analysis is used to identify different service types of stations, the BPNN method is utilized to establish the demand prediction models for different service types of stations, and comparative analysis is employed to determine if the accuracy of the prediction models is improved by making a distinction among stations and working/nonworking days. Finally, a case study is conducted to evaluate the performance of the proposed methodology. Results indicate that making a distinction among stations and working/nonworking days when predicting users’ demand can improve the accuracy of prediction models.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 816 ◽  
Author(s):  
Daigang Wang ◽  
Yong Li ◽  
Jing Zhang ◽  
Chenji Wei ◽  
Yuwei Jiao ◽  
...  

Due to the coexistence of multiple types of reservoir bodies and widely distributed aquifer support in karst carbonate reservoirs, it remains a great challenge to understand the reservoir flow dynamics based on traditional capacitance–resistance (CRM) models and Darcy’s percolation theory. To solve this issue, an improved injector–producer-pair-based CRM model coupling the effect of active aquifer support was first developed and combined with the newly-developed Stochastic Simplex Approximate Gradient (StoSAG) optimization algorithm for accurate inter-well connectivity estimation in a waterflood operation. The improved CRM–StoSAG workflow was further applied for real-time production optimization to find the optimal water injection rate at each control step by maximizing the net present value of production. The case study conducted for a typical karst reservoir indicated that the proposed workflow can provide good insight into complex multi-phase flow behaviors in karst carbonate reservoirs. Low connectivity coefficient and time delay constant most likely refer to active aquifer support through a high-permeable flow channel. Moreover, the injector–producer pair may be interconnected by complex fissure zones when both the connectivity coefficient and time delay constant are relatively large.


Sign in / Sign up

Export Citation Format

Share Document