scholarly journals Immune Phenomena in Myeloid Neoplasms: An “Egg or Chicken” Question

2021 ◽  
Vol 12 ◽  
Author(s):  
Wilma Barcellini ◽  
Bruno Fattizzo

Immune phenomena are increasingly reported in myeloid neoplasms, and include autoimmune cytopenias/diseases and immunodeficiency, either preceding or complicating acute myeloid leukemia, myelodysplastic syndromes (MDS), chronic myeloproliferative neoplasms, and bone marrow failure (BMF) syndromes. Autoimmunity and immunodeficiency are the two faces of a dysregulated immune tolerance and surveillance and may result, along with contributing environmental and genetic factors, in an increased incidence of both tumors and infections. The latter may fuel both autoimmunity and immune activation, triggering a vicious circle among infections, tumors and autoimmune phenomena. Additionally, alterations of the microbiota and of mesenchymal stem cells (MSCs) pinpoint to the importance of a permissive or hostile microenvironment for tumor growth. Finally, several therapies of myeloid neoplasms are aimed at increasing host immunity against the tumor, but at the price of increased autoimmune phenomena. In this review we will examine the epidemiological association of myeloid neoplasms with autoimmune diseases and immunodeficiencies, and the pivotal role of autoimmunity in the pathogenesis of MDS and BMF syndromes, including the paroxysmal nocturnal hemoglobinuria conundrum. Furthermore, we will briefly examine autoimmune complications following therapy of myeloid neoplasms, as well as the role of MSCs and microbiota in these settings.

Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 480-488 ◽  
Author(s):  
Alessandro M. Vannucchi ◽  
Paola Guglielmelli

Abstract Polycythemia vera (PV) and essential thrombocythemia (ET) are chronic myeloproliferative neoplasms that are characterized by thrombohemorrhagic complications, symptom burden, and impaired survival mainly due to thrombosis, progression to myelofibrosis, and transformation to acute leukemia. In this manuscript, we will review the most recent changes in diagnostic criteria, the improvements in risk stratification, and the “state of the art” in the daily management of these disorders. The role of conventional therapies and novel agents, interferon α and the JAK2 inhibitor ruxolitinib, is critically discussed based on the results of a few basic randomized clinical studies. Several unmet needs remain, above all, the lack of a curative approach that might overcome the still burdensome morbidity and mortality of these hematologic neoplasms, as well as the toxicities associated with therapeutic agents.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3078-3078
Author(s):  
Caterina Alati ◽  
Bruno Martino ◽  
Antonio Marino ◽  
Francesca Ronco ◽  
Manuela Priolo ◽  
...  

Abstract Abstract 3078 Chronic myeloproliferative neoplasms (CMNs) include Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF). So far limited studies of familial clusters of CMNs have been reported.Familial chronic myeloproliferative neoplasms are defined when in the same pedigree at least two relatives have CMNs. Familial CMNs should be distinguished from inherited disorders with Mendelian transmission, high penetrance and polyclonal haematopoiesis named ‘hereditary erythrocytosis' and ‘hereditary thrombocytosis'. Recently a 5- to 7-fold higher risk of MPN among first-degree relatives of patients with MPNs was reported. These findings support the limited studies suggesting a familial clustering in MPNs. The analysis of mutations of JAK2 and MPL may improve our ability to identify these conditions. In a consecutive series of patients observed in our Institution from January 2000 to June 2010, we found that among 460 patients with sporadic CMNs and 94 Ph1 positive chronic myeloid leukemia (CML), the prevalence of familial cases was 4%.With 22 pedigrees, 44 patients (8%) were identified with two relatives affected. Familial CMNs were 11 PV,14 ET,7 PMF, 5 CML respectively, while sporadic cases were 96 PV,204 ET,115 PMF and with other 45 CMNS not furtherly classified. As far as the distribution of the different CMNs within the familial cluster, We observed that only in 4 of 22 families (18%) all the affected relatives were diagnosed with the same disease (homogeneous pattern: PV one family and ET three families), whereas 14 families exhibited a mixed distribution among PV, ET and PMF. 8 families exhibited CMNs associated with other hematological disease such as chrocic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), myelodisplastic syndrome (MDS). Among this, 6 families presented a first or second degree of relationship of first and second generation. In 10 cases the relatives were brothers, affected by familial CMNs with a prevalence of PV and TE clinical phenotype at diagnosis.According to JAK2 (V617F) mutational status, analyzed in 30 out of 44 patients, 19 patients showed a positivity pattern, while 18 families showed a heterogeneous pattern; they included both JAK2 (V617F) -positive and JAK2 (V617F)-negative patients. Among the 19 patients with JAK2 (V617F) positivity, the distribution of positivity according to the diagnosis was 100% of PV, 45% of ET and 55%of PMF; homozygosity was present only in PV cases. In our series, only two members of the same family were affected by familial CMNs. Finally it should be noted that in our series of familial cases clinical presentation, therapeutic approach and type and severity of complications were comparable to that of sporadic cases. In conclusion, the present study indicates the relevant possibility of familial CMNs, thus suggesting the opportunity of a detailed family history as part of the initial work-up of patients with CMDs; in addition it also suggests the usefulness of an accurate biological study. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bruno Fattizzo ◽  
Valentina Bellani ◽  
Raffaella Pasquale ◽  
Juri Alessandro Giannotta ◽  
Wilma Barcellini

Large granular lymphocytes (LGL) are lymphoid cells characterized by either a T-cell or a natural killer phenotype whose expansion may be reactive to toxic, infectious, and neoplastic conditions, or result from clonal selection. Recently, the higher attention to LGL clones led to their detection in many clinical conditions including myeloid neoplasms and bone marrow failures. In these contexts, it is still unclear whether LGL cells actively contribute to anti-stem cell autoimmunity or are only a reaction to dysplastic/leukemic myelopoiesis. Moreover, some evidence exists about a common clonal origin of LGL and myeloid clones, including the detection of STAT3 mutations, typical of LGL, in myeloid precursors from myelodysplastic patients. In this article we reviewed available literature regarding the association of LGL clones with myeloid neoplasms (myelodysplastic syndromes, myeloproliferative neoplasms, and acute myeloid leukemias) and bone marrow failures (aplastic anemia and pure red cell aplasia, PRCA) focusing on evidence of pathogenic, clinical, and prognostic relevance. It emerged that LGL clones may be found in up to one third of patients, particularly those with PRCA, and are associated with a more cytopenic phenotype and good response to immunosuppression. Pathogenically, LGL clones seem to expand after myeloid therapies, whilst immunosuppression leading to LGL depletion may favor leukemic escape and thus requires caution.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3466-3466
Author(s):  
Steven M. Johnson ◽  
Lori Ramkissoon ◽  
James Haberberger ◽  
Naomi L Ferguson ◽  
Jonathan Galeotti ◽  
...  

Abstract Introduction: ASXL1 mutations are frequently seen across the clinical spectrum of myeloid neoplasia. The most commonly identified ASXL1 mutation represents a single base duplication within an 8-guanine repeat at nucleotide position 1934 (c.1934dupG). Due to technical limitations of sequencing homopolymer regions, the ASXL1 c.1934dupG variant has been identified as potential artifact in some sequencing assays, though modern next generation sequencing assays and bioinformatics pipelines can generally accurately detect this mutation. However, a comprehensive comparison of ASXL1 c.1934dupG mutations versus non-c.1934dupG ASXL1 mutations have not been performed to date. Thus, we sought to explore a large dataset to determine if any biologic differences existed between these two groups. Methods: Comprehensive genomic profiling by FoundationOne ®Heme testing was performed on patient samples with known or suspected myeloid neoplasms (MN). All MN patients ≥18 years old with 1 or more mutation were identified by internal database query. Patients were categorized as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), non-chronic myeloid leukemia myeloproliferative neoplasms (MPN), or MDS/MPN overlap based on mutation and outside clinical and pathology data. Mutations with variant allele fractions (VAF) >1% were included for analysis, except for the ASXL1 c.1934dupG variant, which was only reported if the VAF was ≥15%. Fisher's exact tests were used to evaluate proportional differences between categorical variables, and Mann-Whitney U tests were used for comparisons of continuous variables. Results: Truncating ASXL1 mutations were identified in 1,414 included patients, occurring in 18% of AML and 26% of chronic myeloid neoplasms. Twenty-eight (2%) patients had multiple ASXL1 mutations, and ASXL1 was the sole mutated gene in 52 patients (4%). The most common ASXL1 mutation was c.1934dupG (Figure 1A), and this was the sole or dominant ASXL1 mutation in 520 cases (37%). The remaining 894 patients (63%) had one or more mutations at other sites in the ASXL1 gene (ASXL1other), with p.E635Rfs, p.R693*, and codon 591 mutations being the most common. There were no significant differences in age, sex, or ancestry signatures between ASXL1c.1934dupG and ASXL1other. We noted slightly fewer ASXL1c.1934dupG mutations in patients with MDS (ASXL1c.1934dupG: ASXL1other 0.48:1) compared to AML (0.65:1, p = 0.03) and MPN (0.60:1, p = 0.01) and those in whom ASXL1 was the sole mutation (Figure 1B). However, these trends may have been due to VAF-based reporting thresholds, as ASXL1 VAFs were lower in singly mutated patients and those with an MDS diagnosis classification. Comparison of co-mutated genes with VAFs ≥15% between ASXL1c.1934dupG and ASXL1other revealed no significant difference in median non-ASXL1 mutations (each median 4, IQR 2-5, p = 0.74). When individual genes were assessed, co-mutation rates of STAG2 (p = 0.01) and KMT2A (p = 0.02) were higher in ASXL1c.1934dupG MNs, while SETBP1 (p = 0.01) mutations were more common with ASXL1other. In all MNs, the absolute differences in the frequency of mutations in ASXL1c.1934dupG versus ASXL1other were small. However, some differences emerged within phenotypic subgroups (Figure 1C). For instance, KMT2A rearrangements and STAG2 mutations were strongly associated with ASXL1c.1934dupG in MDS/MPN and MPN, with ASXL1c.1934dupG: ASXL1other ratios of 5:1 (p = 0.03) and 9:1 (p < 0.001), respectively. In contrast, AML patients with TP53 or SETBP1 mutations had a significantly higher mutation rate in ASXL1other (TP53: 11% vs. 3% in ASXL1c.1934dupG, p < 0.01; SETBP1: 14% vs. 7%, p=0.04). We further identified that other specific ASXL1 mutations were more commonly co-mutated in AML with TP53 (ASXL1 p.R693*, p < 0.001) or SETBP1 (ASXL1 p.R404*, p < 0.001). Conclusion: Our results confirm the ASXL1 c.1934dupG variant occurs in a similar patient population to other ASXL1 mutations, and further supports its pathogenicity in myeloid neoplasia. Subset analysis suggests that ASXL1c.1934dupG and ASXL1other may be associated with certain phenotypic and co-mutational tendencies. Thus, ASXL1 mutation site may be an important variable in some patients and should be considered in future mechanistic and clinical studies. Further study is warranted to determine whether clinical outcomes are affected by different ASXL1 mutations. Figure 1 Figure 1. Disclosures Haberberger: Foundation Medicine, Inc.: Current Employment. Ferguson: Foundation Medicine Inc: Current Employment, Other: ownership.


Author(s):  
David P. Steensma

The hematologic neoplasms include lymphoproliferative disorders (eg, chronic lymphocytic leukemia [CLL]/small lymphocytic lymphoma [SLL], large granular lymphocyte leukemia, hairy cell leukemia [HCL], Hodgkin lymphoma, non-Hodgkin lymphoma), plasma cell disorders (multiple myeloma, light chain amyloidosis, Waldenström macroglobulinemia, POEMS syndrome, heavy chain disease, plasmacytoma), chronic myeloid neoplasms (chronic myeloid leukemia, the BCR/ABL-negative myeloproliferative neoplasms, myelodysplastic syndromes), and acute leukemia (acute myeloid leukemia, acute lymphocytic leukemia). In addition, clonal but not overtly malignant conditions are common in the general population, including monoclonal gammopathy of undetermined significance (MGUS) and monoclonal B lymphocytosis (MBL).


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 282 ◽  
Author(s):  
Vitale ◽  
Montalbano ◽  
Salvetti ◽  
Boccellato ◽  
Griggio ◽  
...  

Autoimmune phenomena are frequently observed in patients with chronic lymphocytic leukemia (CLL) and are mainly attributable to underlying dysfunctions of the immune system. Autoimmune cytopenias (AIC) affect 4–7% of patients with CLL and mainly consist of autoimmune hemolytic anemia and immune thrombocytopenia. Although less common, non-hematological autoimmune manifestations have also been reported. Treatment of CLL associated AIC should be primarily directed against the autoimmune phenomenon, and CLL specific therapy should be reserved to refractory cases or patients with additional signs of disease progression. New targeted drugs (ibrutinib, idelalisib and venetoclax) recently entered the therapeutic armamentarium of CLL, showing excellent results in terms of efficacy and became an alternative option to standard chemo-immunotherapy for the management of CLL associated AIC. However, the possible role of these drugs in inducing or exacerbating autoimmune phenomena still needs to be elucidated. In this article, we review currently available data concerning autoimmune phenomena in patients with CLL, particularly focusing on patients treated with ibrutinib, idelalisib, or venetoclax, and we discuss the possible role of these agents in the management of AIC.


2020 ◽  
Vol 9 (7) ◽  
pp. 2149
Author(s):  
Edoardo Benedetti ◽  
Rita Tavarozzi ◽  
Riccardo Morganti ◽  
Benedetto Bruno ◽  
Emilia Bramanti ◽  
...  

To define the role of spleen stiffness (SS) and liver stiffness (LS) in myelofibrosis and other Philadelphia (Ph)-negative myeloproliferative neoplasms (MPNs), we studied, by ultrasonography (US) and elastography (ES), 70 consecutive patients with myelofibrosis (MF) (no.43), essential thrombocythemia (ET) (no.10), and polycythemia vera (PV) (no.17). Overall, the median SS was not different between patients with MF and PV (p = 0.9); however, both MF and PV groups had significantly higher SS than the ET group (p = 0.011 and p = 0.035, respectively) and healthy controls (p < 0.0001 and p = 0.002, respectively). In patients with MF, SS values above 40 kPa were significantly associated with worse progression-free survival (PFS) (p = 0.012; HR = 3.2). SS also correlated with the extension of bone marrow fibrosis (BMF) (p < 0.0001). SS was higher in advanced fibrotic stages MF-2, MF-3 (W.H.O. criteria) than in pre-fibrotic/early fibrotic stages (MF-0, MF-1) (p < 0.0001) and PFS was significantly different in the two cohorts, with values of 63% and 85%, respectively (p = 0.038; HR = 2.61). LS significantly differed between the patient cohort with MF and healthy controls (p = 0.001), but not between the patient cohorts with ET and PV and healthy controls (p = 0.999 and p = 0.101, respectively). We can conclude that organ stiffness adds valuable information to the clinical work-up of MPNs and could be employed to define patients at a higher risk of progression.


Blood ◽  
2021 ◽  
Author(s):  
Katya Ravid ◽  
Aikaterini Karagianni

Myeloproliferative Neoplasms (MPNs) are a heterogeneous group of chronic hematological diseases that arise from the clonal expansion of abnormal hematopoietic stem cells, of which Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF) have been extensively reviewed in context of clonal expansion, fibrosis and other phenotypes. Here, we review current knowledge on the influence of different forms of MPN on bone health. Studies implicated various degrees of effect of different forms of MPN on bone density, and on osteoblast proliferation and differentiation, using murine models and human data. The majority of studies show that bone volume is generally increased in PMF patients, whereas it is slightly decreased or not altered in ET and PV patients, although possible differences between male and female phenotypes were not fully explored in most MPN forms. Osteosclerosis seen in PMF patients is a serious complication that can lead to bone marrow failure, and the loss of bone reported in some ET and PV patients can lead to osteoporotic fractures. Some MPN forms are associated with increased number of megakaryocytes (MKs), and several of the MK-associated factors in MPN are known to affect bone development. Here, we review known mechanisms involved in these processes, with focus on the role of MKs and secreted factors. Understanding MPN-associated changes in bone health could improve early intervention and treatment of this side effect of the pathology.


Sign in / Sign up

Export Citation Format

Share Document