Model of Smart Manufacturing System

Author(s):  
Maria Usova ◽  
Sergey Chuprov ◽  
Ilya Viksnin ◽  
Ruslan Gataullin ◽  
Antonina Komarova ◽  
...  
2021 ◽  
Vol 13 (10) ◽  
pp. 5495
Author(s):  
Mihai Andronie ◽  
George Lăzăroiu ◽  
Roxana Ștefănescu ◽  
Cristian Uță ◽  
Irina Dijmărescu

With growing evidence of the operational performance of cyber-physical manufacturing systems, there is a pivotal need for comprehending sustainable, smart, and sensing technologies underpinning data-driven decision-making processes. In this research, previous findings were cumulated showing that cyber-physical production networks operate automatically and smoothly with artificial intelligence-based decision-making algorithms in a sustainable manner and contribute to the literature by indicating that sustainable Internet of Things-based manufacturing systems function in an automated, robust, and flexible manner. Throughout October 2020 and April 2021, a quantitative literature review of the Web of Science, Scopus, and ProQuest databases was performed, with search terms including “Internet of Things-based real-time production logistics”, “sustainable smart manufacturing”, “cyber-physical production system”, “industrial big data”, “sustainable organizational performance”, “cyber-physical smart manufacturing system”, and “sustainable Internet of Things-based manufacturing system”. As research published between 2018 and 2021 was inspected, and only 426 articles satisfied the eligibility criteria. By taking out controversial or ambiguous findings (insufficient/irrelevant data), outcomes unsubstantiated by replication, too general material, or studies with nearly identical titles, we selected 174 mainly empirical sources. Further developments should entail how cyber-physical production networks and Internet of Things-based real-time production logistics, by use of cognitive decision-making algorithms, enable the advancement of data-driven sustainable smart manufacturing.


Procedia CIRP ◽  
2020 ◽  
Vol 93 ◽  
pp. 32-37 ◽  
Author(s):  
Mandaná Moshiri ◽  
Amal Charles ◽  
Ahmed Elkaseer ◽  
Steffen Scholz ◽  
Sankhya Mohanty ◽  
...  

2019 ◽  
Vol 38 ◽  
pp. 1660-1667
Author(s):  
Hong-Seok Park ◽  
Risky Ayu Febriani

2018 ◽  
Vol 17 ◽  
pp. 1001-1008 ◽  
Author(s):  
Alireza Zarreh ◽  
Can Saygin ◽  
HungDa Wan ◽  
Yooneun Lee ◽  
Alejandro Bracho ◽  
...  

Author(s):  
Wesley Ellgass ◽  
Nathan Holt ◽  
Hector Saldana-Lemus ◽  
Julian Richmond ◽  
Ali Vatankhah Barenji ◽  
...  

With the developments and applications of the advanced information technologies such as cloud computing, internet of thing, artificial intelligence and virtual reality, industry 4.0 and smart manufacturing era are coming. In this respect, one of the specific challenges is to achieve a connection of physical resources on the shop floor with virtual resources, for real-time response, real time process optimization, and simulation, which is merged by big data problem. In this respect, Digital Twins (DT) concept is introduced as a key technology, which includes physical resources, virtual resources, service system, and digital twin data. DT considers current condition of physical resource and prediction of future events to make a responsive decision. However, due to the complexity of building a digital equivalent in virtual space to its physical counterpart, very little applications have been developed with this purpose, especially in the industrial manufacturing area. Therefore, the types of data and technology required to build the DT for a manufacturing system are presented in this work, trying to develop a framework of DT based manufacturing system, which is supported by the virtual reality for virtualization of physical resources.


2019 ◽  
Author(s):  
Alireza Zarreh ◽  
HungDa Wan ◽  
Yooneun Lee ◽  
Can Saygin ◽  
Rafid Al Janahi

Maintenance is the core function to keep a system running and avoid failure. Total Productive Maintenance (TPM) has broadly utilized maintenance strategy to improve the customer's satisfaction and hence obtain a competitive advancement. However, the complexity of smart manufacturing systems due to the recent advancements, specifically the integration of internet and network systems with traditional manufacturing platforms, has made this function more challenging. The focus of this paper is to explain how cybersecurity could impact the TPM by affecting the overall equipment effectiveness (OEE) in a smart manufacturing system by providing a structured literature survey. First, it provides concerns on principle of TPM regarding cybersecurity in smart manufacturing systems. Then, it highlights the effect of a variety of cyber-physical threats on OEE, as a main key performance indicator of TPM and how differently they can reduce OEE. The countermeasures that could be considered to compensate for the negative impact of a cybersecurity threat on the overall effectiveness of the system also will be discussed. Finally, research gaps and challenges are identified to improve overall equipment effectiveness (OEE) in presence of cybersecurity threats in critical manufacturing industries.


2021 ◽  
Vol 17 (43) ◽  
pp. 170
Author(s):  
Al-Amin Al-Amin ◽  
Tanjim Hossain ◽  
Jahidul Islam

This paper encompasses a state-of-the-art review on smart manufacturing system (SMS), focusing on theoretical relevance to technology development and technology management. The theoretical foundation of technology development has been reviewed based on the Rogers’ Diffusion of Innovation (DoI) theory and technology management has been focused on the basis of Technology Strategy Model (TSM) of Rieck and Dickson to shape the paper with theory of Management of Technology (MOT). A patent on SMS has been discussed to show how different technologies are integrated into this system. The characteristics of SMS have discussed the overall aspects of this future technological system. The the global textile complex has been depicted with a proposed SMS model of the apparel production unit. This study integrates the latest articles and technology on future manufacturing system perspectives, which gives a robust idea of mintegration have been identified as the major components of SMS. A brief model of SMS in the apparel production system demonstrated how SMS works in the industry level. The researchers on smart manufacturing can take away the above insights into their future research to take SMS research more forward.inimizing human interaction and maximizing the production efficiency in the manufacturing industry. The cyber-physical system, AI, ERP, digital twin, big data, additive manufacturing, cloud manufacturing, simulation, and vertical and horizontal 


Sign in / Sign up

Export Citation Format

Share Document