Effect of Fines and Matric Suction on the Collapsibility of Sandy Soils

Author(s):  
Mohamed A. Alassal ◽  
Asmaa M. Hassan ◽  
Hussein H. Elmamlouk
Keyword(s):  
2020 ◽  
pp. 147-152
Author(s):  
K. Shimada ◽  
H. Fujii ◽  
S. Nishimura ◽  
T. Nishiyama ◽  
T. Morii

2004 ◽  
Vol 41 (5) ◽  
pp. 908-920 ◽  
Author(s):  
Hong Yang ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong ◽  
D G Fredlund

Drying and wetting soil-water characteristic curves (SWCCs) for five sandy soils are investigated using a Tempe pressure cell and capillary rise open tube. The test data are fitted to two SWCC equations using a least-squares algorithm. The obtained fitting parameters and some hysteretic behaviour are discussed and correlated with grain-size distribution parameters. A concept of total hysteresis is proposed to quantify the hysteresis of SWCC. The measured SWCC for one soil is also compared with the SWCC estimated from its grain-size distribution. The SWCC was also obtained at a high dry density for one of the soils. The results show that the shapes of the SWCCs are similar to the grain-size distributions of the soils and are affected by the dry density of the soil. A coarse-grained soil has a lower air-entry value, residual matric suction, and water-entry value and less total hysteresis than a fine-grained soil. The residual matric suction and water-entry value tend to approach the same value when the effective grain size D10 of the soil is small, in the range of 3-6 mm. SWCCs of uniform soils have steeper slopes and less total hysteresis than those of less uniform soils. Soils with a low dry density have a lower air-entry value and residual matric suction than soils with a high dry density. The SWCC predicted from grain-size distribution is found to be sufficiently accurate.Key words: soil-water characteristic curve, water content, suction, hysteresis, grain size.


2020 ◽  
Vol 21 (1) ◽  
pp. 35-44
Author(s):  
Janet L Gehring ◽  
Caitlin Foster ◽  
Alan Yepsen

2012 ◽  
Vol 11 (12) ◽  
pp. 2163-2168
Author(s):  
Alexandra-Dana Chitimus ◽  
Valentin Nedeff ◽  
Emilian Florin Mosnegutu ◽  
Mirela Panainte

2020 ◽  
Vol 71 (1) ◽  
pp. 192-200
Author(s):  
Anca-Luiza Stanila ◽  
Catalin Cristian Simota ◽  
Mihail Dumitru

Highlighting the sandy soil of Oltenia Plain calls for a better knowledge of their variability their correlation with major natural factors from each physical geography. Pedogenetic processes specific sandy soils are strongly influenced by nature parent material. This leads, on the one hand, climate aridity of the soil due to strong heating and accumulation of small water reserves, consequences emphasizing the moisture deficit in the development of the vegetation and favoring weak deflation, and on the other hand, an increase in mineralization organic matter. Relief under wind characteristic sandy land, soil formation and distribution has some particularly of flat land with the land formed on the loess. The dune ridges are less evolved soils, profile underdeveloped and poorly supplied with nutrients compared to those on the slopes of the dunes and the interdune, whose physical and chemical properties are more favorable to plant growth.Both Romanati Plain and the Blahnita (Mehedinti) Plain and Bailesti Plain, sand wind shaped covering a finer material, loamy sand and even loess (containing up to 26% clay), also rippled with negative effects in terms of overall drainage. Depending on the pedogenetic physical and geographical factors that have contributed to soil cover, in the researched were identified following classes of soils: protisols, cernisols, cambisols, luvisols, hidrisols and antrosols.Obtaining appropriate agricultural production requires some land improvement works (especially fitting for irrigation) and agropedoameliorative works. Particular attention should be paid to preventing and combating wind erosion.


1972 ◽  
Vol 64 (3) ◽  
pp. 359-361 ◽  
Author(s):  
G. M. Volk ◽  
G. C. Horn
Keyword(s):  

1992 ◽  
Vol 21 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Hans J.M. Grinsven ◽  
Willem H. Riemsdijk ◽  
René Otjes ◽  
Nico Breemen

Sign in / Sign up

Export Citation Format

Share Document