wind characteristic
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 2006 (1) ◽  
pp. 012053
Author(s):  
Rongwei Liao ◽  
Xiaoyi Fang ◽  
Huaiyu Liu ◽  
Rongwei Zhou ◽  
Lei Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 821 (1) ◽  
pp. 012025
Author(s):  
RongWei Liao ◽  
XiaoYi Fang ◽  
DongBin Zhang ◽  
YuZhou Zhu ◽  
Lei Zhang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiujun Li ◽  
Yongguang Li ◽  
Jianting Zhou ◽  
Qian Wang ◽  
Xu Wang

To study the wind field characteristics near the ground pulsation in typhoon conditions, wind field conditions in the area affected by Typhoon “Fung-Wong” were monitored using wind field instruments installed in the construction building of Wenzhou University, China. Real-time wind field data were collected during typhoons. Wind characteristic parameters such as mean wind speed, wind direction angle, turbulence intensity, gust factor, peak factor, coherence function, and autocorrelation were analyzed, and the wind field characteristics during the typhoon were summarized. The results indicated that the longitudinal and lateral turbulence intensities decreased with an increase in the mean wind speed, and there was an obvious linear relationship between them. The vertical and horizontal gust factor and peak factor decreased with an increase in mean wind speed, and the trend was more obvious in the horizontal direction. There was a significant correlation between the gust factor and the peak factor. The turbulence intensity and gust factor decreased with time, and the turbulence intensity attenuation speed increased with time. The empirical curve presented by Davenport (1961) can simulate the correlation characteristics of the fluctuating wind speed components of Typhoon Fung-Wong at some measuring points. With an increase in the time difference, the dependence of the instantaneous values at the two time points gradually decreased.


2021 ◽  
pp. 102664
Author(s):  
Deqiang He ◽  
Xiaoliang Teng ◽  
Yanjun Chen ◽  
Yuzhao Yuan ◽  
Xianwang Li ◽  
...  

2020 ◽  
Vol 71 (1) ◽  
pp. 192-200
Author(s):  
Anca-Luiza Stanila ◽  
Catalin Cristian Simota ◽  
Mihail Dumitru

Highlighting the sandy soil of Oltenia Plain calls for a better knowledge of their variability their correlation with major natural factors from each physical geography. Pedogenetic processes specific sandy soils are strongly influenced by nature parent material. This leads, on the one hand, climate aridity of the soil due to strong heating and accumulation of small water reserves, consequences emphasizing the moisture deficit in the development of the vegetation and favoring weak deflation, and on the other hand, an increase in mineralization organic matter. Relief under wind characteristic sandy land, soil formation and distribution has some particularly of flat land with the land formed on the loess. The dune ridges are less evolved soils, profile underdeveloped and poorly supplied with nutrients compared to those on the slopes of the dunes and the interdune, whose physical and chemical properties are more favorable to plant growth.Both Romanati Plain and the Blahnita (Mehedinti) Plain and Bailesti Plain, sand wind shaped covering a finer material, loamy sand and even loess (containing up to 26% clay), also rippled with negative effects in terms of overall drainage. Depending on the pedogenetic physical and geographical factors that have contributed to soil cover, in the researched were identified following classes of soils: protisols, cernisols, cambisols, luvisols, hidrisols and antrosols.Obtaining appropriate agricultural production requires some land improvement works (especially fitting for irrigation) and agropedoameliorative works. Particular attention should be paid to preventing and combating wind erosion.


2020 ◽  
Vol 6 ◽  
pp. 79-87 ◽  
Author(s):  
Faleh H. Mahmood ◽  
Ali K. Resen ◽  
Ahmed B. Khamees

2019 ◽  
Vol 23 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Jingyu Zhang ◽  
Mingjin Zhang ◽  
Yongle Li ◽  
Chen Fang

The typical U-shaped deep-cut canyon is widely distributed in the western mountainous areas of China, especially in Sichuan province and Yunnan province. The deep-cut canyon has the characteristics of the high drop in elevation, high-temperature difference, and complex wind environment. A 50 m high meteorological mast with a total of eight anemometers was erected in such topography, and a long-span suspension bridge will be constructed in the area where the meteorological mast is located. Based on the long-term monitor data, the wind characteristic parameters including average and fluctuating wind characteristics and coherence between different heights are investigated. The results are as follows. The dominant wind direction which depends on the topography is north–south. The attack angle of wind is mainly less than zero, and its probability distribution obeys the hypothetical Gaussian distribution. Both the increases in height of anemometer and in wind speed reduce the dispersion of the attack angle of wind. The gust factor has a similar change law of attack angle of wind. Turbulence intensities are affected by the height of the anemometer and the wind speed, and they are different from the recommended value of China Codes. In terms of turbulence integral length scale, the value increases with an increase in the height of the anemometer in the same component. The largest value occurs in the longitudinal direction and the smallest occurs in the vertical direction at the same level. The coherence between any two locations is relatively strong, and the longitudinal component is stronger than others. The measured wind power spectrum for longitudinal, lateral, and vertical wind in deep-cut canyon fits the von Kármán model better.


2019 ◽  
Vol 2 (3) ◽  
pp. 222-229
Author(s):  
Dena Hendriana ◽  
Eka Budiarto ◽  
Alexander Clements ◽  
Arko Djajadi

Wind energy is one of the potential renewable energy, but the applications have to beadjusted to the available wind characteristic in the area. In Indonesia, the wind speed is inaverage not very high, only around 4 m/s. Therefore the wind turbine design have to be adjustedfor usage in Indonesia. In this research, two wind turbine designs are compared. One design isof the form Horizontal-Axis Wind Turbine (HAWT) and the other is of the form Vertical-AxisWind Turbine (VAWT). Both designs are optimized for wind speed of 4 m/s. The comparisonsare done using computer simulation software OpenFOAM. The result shows VAWT design canproduce similar power with smaller turbine dimension than the HAWT design.


Sign in / Sign up

Export Citation Format

Share Document