Flow Field in a Continuous Casting Tundish with a Novel Single-Induction Heater

Author(s):  
Hong Xiao ◽  
Shuo Zhang ◽  
Jinwen Liu ◽  
Guanghui Wu ◽  
Haiying Yao ◽  
...  
2013 ◽  
Vol 774-776 ◽  
pp. 316-320
Author(s):  
Yang Li ◽  
Yan Jin ◽  
Hui Yu ◽  
Kang Yang ◽  
Fan Ai ◽  
...  

Placement in the middle retaining wall package, aimed at controlling the flow of liquid steel forms, so that movement of a reasonable level remained stable, while reducing interference from turbulence and dead zones, molten steel in order to extend the average stay of removal in favor of inclusion to improve the cleanliness of molten steel. Keywords:Tundish; Retaining Wall; Flow field; Mathematical Modeling; Inclusion;Optimization setting


2011 ◽  
Vol 284-286 ◽  
pp. 1209-1215 ◽  
Author(s):  
Lei Lei Zhang ◽  
Deng Fu Chen ◽  
Qiang Liu ◽  
Min Zhang ◽  
Xin Xie ◽  
...  

Flow control devices (weir and dam) in a continuous casting tundish are very important to the flow field, which influences the temperature uniform and the inclusion floating. In this work, the weir and dam were firstly optimized through numerical simulation and water simulation synthetically by orthogonal optimization tests. And the optimal parameters showed that the distance from upper weir to inlet was 1000 mm, the distance of upper weir to tundish bottom was 150 mm, the distance from upper weir to dam was 600 mm, and the height of the dam was 320 mm. Then the effect of different arrangement holes on the dam was discussed through RTD curve and velocity field under the optimum flow control device. And it revealed that the hole influenced the flow pattern in that area obviously, a dam with two holes could get a better flow field.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3681
Author(s):  
Guoliang Liu ◽  
Haibiao Lu ◽  
Bin Li ◽  
Chenxi Ji ◽  
Jiangshan Zhang ◽  
...  

A mathematical model coupled with electromagnetic field has been developed to simulate the transient turbulence flow and initial solidification in a slab continuous casting mold under different electromagnetic stirring (EMS) currents and casting speeds. Through comparing the magnetic flux density, flow field with measured results, the reliability of the mathematical model is proved. The uniform index of solidified shell thickness has been introduced to judge the uniformity of the solidified shell. The results show that a horizonal recirculation flow has been generated when EMS is applied, and either accelerated or decelerated regions of flow field are formed in the liquid pool. Large EMS current and low casting speed may cause the plug flow near the mold narrow face and a suitable EMS current can benefit to the uniform growth of solidified shell. Meanwhile, an industrial test exhibits that EMS can weaken the level fluctuation and number density of inclusion. Overall, a rational EMS current range is gained, when the casting speed is 1.2 m/min, the rational EMS current is 500–600 A.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


2011 ◽  
Vol 291-294 ◽  
pp. 423-427
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Zhu Zhang

An inner-outer coupled cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler—U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve inner structure of billet. The flow status and solidification status of molten steel under coupling flow field and temperature field in inner-outer coupled cooling mold are simulated by using fluid dynamics software, and compare with those in traditional mold. It is found that setting inner cooler in the mold can make molten steel flow status even, which is favorable to floating up of the inclusion, quickening the solidification of steel liquid and improving the quality of billet.


2001 ◽  
Vol 72 (11-12) ◽  
pp. 466-476 ◽  
Author(s):  
Hans-Jürgen Odenthal ◽  
Ralf Bölling ◽  
Herbert Pfeifer ◽  
Jörg-Friedrich Holzhauser ◽  
Franz-Josef Wahlers

Sign in / Sign up

Export Citation Format

Share Document