Optimizing of Flow Control Devices in a Single Strand Continuous Casting Tundish

2011 ◽  
Vol 284-286 ◽  
pp. 1209-1215 ◽  
Author(s):  
Lei Lei Zhang ◽  
Deng Fu Chen ◽  
Qiang Liu ◽  
Min Zhang ◽  
Xin Xie ◽  
...  

Flow control devices (weir and dam) in a continuous casting tundish are very important to the flow field, which influences the temperature uniform and the inclusion floating. In this work, the weir and dam were firstly optimized through numerical simulation and water simulation synthetically by orthogonal optimization tests. And the optimal parameters showed that the distance from upper weir to inlet was 1000 mm, the distance of upper weir to tundish bottom was 150 mm, the distance from upper weir to dam was 600 mm, and the height of the dam was 320 mm. Then the effect of different arrangement holes on the dam was discussed through RTD curve and velocity field under the optimum flow control device. And it revealed that the hole influenced the flow pattern in that area obviously, a dam with two holes could get a better flow field.

2021 ◽  
Author(s):  
Koldo Portal-Porras ◽  
Unai Fernandez-Gamiz ◽  
Ekaitz Zulueta ◽  
Alejandro Ballesteros-Coll ◽  
Asier Zulueta

Abstract Wind energy has become an important source of electricity generation, with the aim of achieving a cleaner and more sustainable energy model. However, wind turbine performance improvement is required to compete with conventional energy resources. To achieve this improvement, flow control devices are implemented on airfoils. Computational Fluid Dynamics (CFD) simulations are the most popular method for analyzing this kind of devices, but in recent years, with the growth of Artificial Intelligence, predicting flow characteristics using neural networks is becoming increasingly popular. In this work, 158 different CFD simulations of a DU91W(2)250 airfoil are conducted, with two different flow control devices, rotating microtabs and Gurney flaps, added on its Trailing Edge (TE). These flow control devices are implemented by using the cell-set meshing technique. These simulations are used to train and test a Convolutional Neural Network (CNN) for velocity and pressure field prediction and another CNN for aerodynamic coefficient prediction. The results show that the proposed CNN for field prediction is able to accurately predict the main characteristics of the flow around the flow control device, showing very slight errors. Regarding the aerodynamic coefficients, the proposed CNN is also capable to predict them reliably, being able to properly predict both the trend and the values. In comparison with CFD simulations, the use of the CNNs reduces the computational time in four orders of magnitude.


2011 ◽  
Vol 284-286 ◽  
pp. 1071-1079 ◽  
Author(s):  
Chao Chen ◽  
Guo Guang Cheng ◽  
Hai Kuo Yang ◽  
Zi Bing Hou

Physical modeling using a 1:3 scale model was carried out to study the fluid flow characteristics in a delta shaped, four-strand continuous casting tundish with different types of flow control devices (FCD). The symmetric baffle with inclined holes (II shaped from top view) was not suitable in this study, while the U shaped baffle with inclined holes was suggested for the integrated fluid flow in tundish. The principles of U shaped baffle designs were proposed, and 18 types of FCD were evaluated by the residence time distribution (RTD) curve and strand consistency. The RTD curves of abnormal operations (with one strand closed) of the II shaped and U shaped baffles were also investigated.


Author(s):  
Mohd S. Aris ◽  
Ieuan Owen ◽  
Chris J. Sutcliffe

This paper is concerned with the convective heat transfer of heated surfaces through the use of active flow control devices. An investigation has been carried out into the use of two flow control design configurations manufactured from Shape Memory Alloys (SMAs) which are activated at specified temperatures. In this design, a high surface temperature would activate rectangular flaps to change shape and protrude at a 45° angle of attack. This protrusion would generate longitudinal vortices and at the same time allow air to flow into cooling channels underneath the flaps, cooling a heated surface downstream of the flow control device. One- and two-channel flow control configurations were explored in this work. The flow control device was made from pre-alloyed powders of SMA material in a rapid prototyping process known as Selective Laser Melting (SLM). It was tested for its heat transfer enhancement in an open test section wind tunnel supplied with low velocity air flow. Infrared thermography was used to evaluate the surface temperatures of the downstream heated surface. Promising results were obtained for the flow control design when the heated surface temperatures were varied from 20 °C to 85 °C. In the one-channel configuration, the flow control device in its activated shape increased heat transfer to a maximum of 50% compared to its deactivated shape. The activated flow control device in the two-channel configuration experienced a heat transfer enhancement of up to 90% compared to when it is deactivated.


2020 ◽  
Author(s):  
George Papadakis ◽  
Marinos Manolesos

Abstract. As wind turbines grow larger, the use of flatback airfoils has become standard practice for the root region of the blades. Flatback profiles provide higher lift and reduced sensitivity to soiling at significantly higher drag values. A number of flow control devices has been proposed to improve the performance of flatback profiles. In the present study, the flow past a flatback airfoil at a chord Reynolds number of 1.5 × 106 with and without trailing edge flow control devices is considered. Two different numerical approaches are applied, Unsteady Reynolds Averaged Navier Stokes (RANS) simulations and Detached Eddy Simulations (DES). The computational predictions are compared to wind tunnel measurements to assess the suitability of each method. The effect of each flow control device on the flow is examined based on the DES results on the finer mesh. Results agree well with the experimental findings and show that a newly proposed flap device outperforms traditional solutions for flatback airfoils. In terms of numerical modelling, the more expensive DES approach is more suitable if the wake frequencies are of interest, but the simplest 2D RANS simulations can provide acceptable load predictions.


2021 ◽  
Author(s):  
Da Zhu ◽  
Alberto Uzcategui

Abstract Flow Control Device (FCD) completions in steam assisted thermal applications have been implemented in several places: Canada, California, China, Oman and Colombia, among others. Such completion configurations have been more common in recent years to mitigate or avoid uneven and/or improper steam placement and steam breakthrough, which are some of the critical issues operators have experienced in these developments. This study presents different FCD technologies designed to optimize the steam injection and fluids production for diverse steam assisted applications including SAGD, CSS and Steam Flooding. Three FCD technologies are introduced: (i) supersonic steam injection FCD, (ii) steam choking FCD and (iii) multi-directional FCD. Extensive Computational Fluid Dynamic (CFD) simulations, analytic near-wellbore simulations and flow loop testing were conducted to evaluate the performance of the three technologies: (i) the supersonic steam injection FCD showed a high pressure recovery (therefore, less upstream pressure requirements) and a reduction of the cumulative steam-oil ratio, (ii) the steam choking FCD demonstrated the highest steam choking capability for these type of devices and (iii) the multi-directional FCD showed promising results for CSS applications to allow for supersonic steam injection during the injection phase and steam choking capabilities during the production phase Common FCD deployment risks such as erosion, scaling potential and high pressure drops were reviewed to provide the reader with a high level understanding of the factors which could induce these issues. Finally, field data where FCD completions have been installed is presented to compare the FCD wells performance versus conventional well designs and illustrate the success of these completions strategies. Keywords: flow control devices, supersonic steam injection, steam choking


2018 ◽  
Vol 28 (5) ◽  
pp. 1156-1168 ◽  
Author(s):  
Rafael Bardera ◽  
Marina León-Calero ◽  
Joaquín de Nova-Trigueros

Purpose Aircraft carriers are essential for modern naval operations. Takeoff maneuver is critical because of the short runway distance. The ski-jump ramp is a system which increases the angle of attack of the aircraft, so an extra lift is obtained. Regarding the flow configuration over the ski-jump ramp at ahead wind conditions, the complex aerodynamic environment generated by the ramp configuration influences aircraft operations. This flow field is mainly characterized by a low velocity recirculation bubble that reduces aircraft performances. The purpose of this paper is to find a solution to reduce these adverse effects, by means of flow control devices, which opens a wide field of research. Design/methodology/approach This paper presents wind tunnel tests performed to study the flow configuration in the vicinity of the ski-jump ramp and the flow control devices effects. A 1:100 scaled ship model was built to develop experimental tests by using flow control devices fabricated by means of additive manufacturing. Particle image velocimetry technique was used to measure the velocity flow field and the turbulence intensity maps. Findings Interesting results were obtained when the angle between the intersection of the ski-jump ramp and the columnar vortex generator (CVG) is modified. The results showed a high reduction of the recirculation bubble generated over the flight deck. Originality/value CVG has presented encouraging results as a passive flow control device. A study of the variation of CVG geometrical parameters has been developed.


2020 ◽  
Vol 5 (3) ◽  
pp. 911-927
Author(s):  
George Papadakis ◽  
Marinos Manolesos

Abstract. As wind turbines grow larger, the use of flatback airfoils has become standard practice for the root region of the blades. Flatback profiles provide higher lift and reduced sensitivity to soiling at significantly higher drag values. A number of flow control devices have been proposed to improve the performance of flatback profiles. In the present study, the flow past a flatback airfoil at a chord Reynolds number of 1.5×106 with and without trailing edge flow control devices is considered. Two different numerical approaches are applied, unsteady Reynolds-Averaged Navier Stokes (RANS) simulations and detached eddy simulations (DES). The computational predictions are compared against wind tunnel measurements to assess the suitability of each method. The effect of each flow control device on the flow is examined based on the DES results on the finer mesh. Results agree well with the experimental findings and show that a newly proposed flap device outperforms traditional solutions for flatback airfoils. In terms of numerical modelling, the more expensive DES approach is more suitable if the wake frequencies are of interest, but the simplest 2D RANS simulations can provide acceptable load predictions.


Sign in / Sign up

Export Citation Format

Share Document