Intelligent Learning Analytics in Healthcare Sector Using Machine Learning

Author(s):  
Pratiyush Guleria ◽  
Manu Sood
Author(s):  
Xin (Shane) Wang ◽  
Jun Hyun (Joseph) Ryoo ◽  
Neil Bendle ◽  
Praveen K. Kopalle

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1615
Author(s):  
Zeeshan Ali Khan ◽  
Ubaid Abbasi ◽  
Sung Won Kim

Low power wide area networks (LPWAN) are comprised of small devices having restricted processing resources and limited energy budget. These devices are connected with each other using communication protocols. Considering their available resources, these devices can be used in a number of different Internet of Things (IoT) applications. Another interesting paradigm is machine learning, which can also be integrated with LPWAN technology to embed intelligence into these IoT applications. These machine learning-based applications combine intelligence with LPWAN and prove to be a useful tool. One such IoT application is in the medical field, where they can be used to provide multiple services. In the scenario of the COVID-19 pandemic, the importance of LPWAN-based medical services has gained particular attention. This article describes various COVID-19-related healthcare services, using the the applications of machine learning and LPWAN in improving the medical domain during the current COVID-19 pandemic. We validate our idea with the help of a case study that describes a way to reduce the spread of any pandemic using LPWAN technology and machine learning. The case study compares k-Nearest Neighbors (KNN) and trust-based algorithms for mitigating the flow of virus spread. The simulation results show the effectiveness of KNN for curtailing the COVID-19 spread.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bidhan Lamichhane ◽  
Andy G. S. Daniel ◽  
John J. Lee ◽  
Daniel S. Marcus ◽  
Joshua S. Shimony ◽  
...  

Glioblastoma multiforme (GBM) is the most frequently occurring brain malignancy. Due to its poor prognosis with currently available treatments, there is a pressing need for easily accessible, non-invasive techniques to help inform pre-treatment planning, patient counseling, and improve outcomes. In this study we determined the feasibility of resting-state functional connectivity (rsFC) to classify GBM patients into short-term and long-term survival groups with respect to reported median survival (14.6 months). We used a support vector machine with rsFC between regions of interest as predictive features. We employed a novel hybrid feature selection method whereby features were first filtered using correlations between rsFC and OS, and then using the established method of recursive feature elimination (RFE) to select the optimal feature subset. Leave-one-subject-out cross-validation evaluated the performance of models. Classification between short- and long-term survival accuracy was 71.9%. Sensitivity and specificity were 77.1 and 65.5%, respectively. The area under the receiver operating characteristic curve was 0.752 (95% CI, 0.62–0.88). These findings suggest that highly specific features of rsFC may predict GBM survival. Taken together, the findings of this study support that resting-state fMRI and machine learning analytics could enable a radiomic biomarker for GBM, augmenting care and planning for individual patients.


Author(s):  
Raja Sarath Kumar Boddu ◽  
Shahanawaj Ahamad ◽  
K.V. Pradeep Kumar ◽  
Mritha Ramalingam ◽  
Laxmi Kirana Pallathadka ◽  
...  

Author(s):  
Aman Sharma ◽  
Rinkle Rani

Advancement in genome sequencing technology has empowered researchers to think beyond their imagination. Researchers are trying their hard to fight against various genetic diseases like cancer. Artificial intelligence has empowered research in the healthcare sector. Moreover, the availability of opensource healthcare datasets has motivated the researchers to develop applications which can help in early diagnosis and prognosis of diseases. Further, next-generation sequencing (NGS) has helped to look into detailed intricacies of biological systems. It has provided an efficient and cost-effective approach with higher accuracy. The advent of microRNAs also known as small noncoding genes has begun the paradigm shift in oncological research. We are now able to profile expression profiles of RNAs using RNA-seq data. microRNA profiling has helped in uncovering their relationship in various genetic and biological processes. Here in this chapter, the authors present a review of the machine learning perspective in cancer research.


Sign in / Sign up

Export Citation Format

Share Document