Healthcare 4.0: A Voyage of Fog Computing with IOT, Cloud Computing, Big Data, and Machine Learning

Author(s):  
Anish Kumar Sarangi ◽  
Ambarish Gajendra Mohapatra ◽  
Tarini Charan Mishra ◽  
Bright Keswani
2018 ◽  
Vol 6 (4) ◽  
pp. 39-47 ◽  
Author(s):  
Reuben Ng

Cloud computing adoption enables big data applications in governance and policy. Singapore’s adoption of cloud computing is propelled by five key drivers: (1) public demand for and satisfaction with e-government services; (2) focus on whole-of-government policies and practices; (3) restructuring of technology agencies to integrate strategy and implementation; (4) building the Smart Nation Platform; (5) purpose-driven cloud applications especially in healthcare. This commentary also provides recommendations to propel big data applications in public policy and management: (a) technologically, embrace cloud analytics, and explore “fog computing”—an emerging technology that enables on-site data sense-making before transmission to the cloud; (b) promote regulatory sandboxes to experiment with policies that proactively manage novel technologies and business models that may radically change society; (c) on the collaboration front, establish unconventional partnerships to co-innovate on challenges like the skills-gap—an example is the unprecedented partnership led by the Lee Kuan Yew School of Public Policy with the government, private sector and unions.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xin Chen

Using big data to promote economic development, improve social governance, and improve service and regulatory capabilities is becoming a trend. However, the current cloud computing for data processing has been difficult to meet the demand, and the server pressure has increased dramatically, so people pay special attention to the big data integration of fog computing. In order to make the application of big data meet people’s needs, we have established relevant mathematical models based on fog calculation, made system big data integration, collected relevant data, designed experiments, and obtained relevant research data by reviewing relevant literature and interviewing professionals. The research shows that big data integration using fog computing modeling has the characteristics of fast response and stable function. Compared with cloud computing and previous computer algorithms, big data integration has obvious advantages, and the computing speed is nearly 20% faster than cloud computing and about 35% higher than other computing methods. This shows that big data integration built by fog computing can have a huge impact on people’s lives.


Now days, Machine learning is considered as the key technique in the field of technologies, such as, Internet of things (IOT), Cloud computing, Big data and Artificial Intelligence etc. As technology enhances, lots of incorrect and redundant data are collected from these fields. To make use of these data for a meaningful purpose, we have to apply mining or classification technique in the real world. In this paper, we have proposed two nobel approaches towards data classification by using supervised learning algorithm


2017 ◽  
pp. 29-40 ◽  
Author(s):  
Amin Hosseinian-Far ◽  
Muthu Ramachandran ◽  
Charlotte Lilly Slack

Author(s):  
Himanshu Sahu ◽  
Gaytri

IoT requires data processing, which is provided by the cloud and fog computing. Fog computing shifts centralized data processing from the cloud data center to the edge, thereby supporting faster response due to reduced communication latencies. Its distributed architecture raises security and privacy issues; some are inherited from the cloud, IoT, and network whereas others are unique. Securing fog computing is equally important as securing cloud computing and IoT infrastructure. Security solutions used for cloud computing and IoT are similar but are not directly applicable in fog scenarios. Machine learning techniques are useful in security such as anomaly detection, intrusion detection, etc. So, to provide a systematic study, the chapter will cover fog computing architecture, parallel technologies, security requirements attacks, and security solutions with a special focus on machine learning techniques.


2017 ◽  
Vol 13 (02) ◽  
pp. 119-143 ◽  
Author(s):  
Claude E. Concolato ◽  
Li M. Chen

As an emergent field of inquiry, Data Science serves both the information technology world and the applied sciences. Data Science is a known term that tends to be synonymous with the term Big-Data; however, Data Science is the application of solutions found through mathematical and computational research while Big-Data Science describes problems concerning the analysis of data with respect to volume, variation, and velocity (3V). Even though there is not much developed in theory from a scientific perspective for Data Science, there is still great opportunity for tremendous growth. Data Science is proving to be of paramount importance to the IT industry due to the increased need for understanding the insurmountable amount of data being produced and in need of analysis. In short, data is everywhere with various formats. Scientists are currently using statistical and AI analysis techniques like machine learning methods to understand massive sets of data, and naturally, they attempt to find relationships among datasets. In the past 10 years, the development of software systems within the cloud computing paradigm using tools like Hadoop and Apache Spark have aided in making tremendous advances to Data Science as a discipline [Z. Sun, L. Sun and K. Strang, Big data analytics services for enhancing business intelligence, Journal of Computer Information Systems (2016), doi: 10.1080/08874417.2016.1220239]. These advances enabled both scientists and IT professionals to use cloud computing infrastructure to process petabytes of data on daily basis. This is especially true for large private companies such as Walmart, Nvidia, and Google. This paper seeks to address pragmatic ways of looking at how Data Science — with respect to Big-Data Science — is practiced in the modern world. We also examine how mathematics and computer science help shape Big-Data Science’s terrain. We will highlight how mathematics and computer science have significantly impacted the development of Data Science approaches, tools, and how those approaches pose new questions that can drive new research areas within these core disciplines involving data analysis, machine learning, and visualization.


Author(s):  
V. Ayma ◽  
C. Beltrán ◽  
P. N. Happ ◽  
G. A. O. P. Costa ◽  
R. Q. Feitosa

<p><strong>Abstract.</strong> Climate change and its effects are taking more importance nowadays; and glaciers are one of the most affected ecosystems by that, considering that the energy of Earth’s surface and its temperature may be directly related to glacier temporal changes. Then, the comprehension of glaciers behaviour, by its retreating or melting critical conditions, can be achieved by the analysis of Remote Sensing data, but considering the unprecedented volumes of information currently provided by satellites sensors, we can refer to this analysis as a big data problem. Machine learning techniques have the potential to improve the analysis of this type of data; however, most current machine learning algorithms are unable to properly process such huge volumes of data. In the attempt to overcome the computational limitations related to Remote Sensing Big Data analysis, we implemented the K-Means and Expectation Maximization algorithms, as distributed clustering solutions, exploiting the capabilities of cloud computing infrastructure for processing very large datasets. The solution was developed over the InterCloud Data Mining Package, which is a suite of distributed classification methods, previously employed in hyperspectral image analysis. In this work we extended the functionalities of that package, by making it able to process multispectral images using the aforementioned clustering algorithms. To validate our proposal, we analysed the Ausangate glacier, located on the Andes Mountains, in Peru, by mapping the changes in such environment through a multi-temporal Remote Sensing analysis. Our results and conclusions are focused on the thematic accuracy and the computational performance achieved by our proposed solution. Thematic accuracy was assessed by comparing the automatically detected glacier areas by the clustering approaches against the manually selected ground truth data. We compared the computational load involved in executing the clustering processes sequentially and in a distributed fashion, using a local mode and cluster configuration over a cloud computing infrastructure.</p>


Sign in / Sign up

Export Citation Format

Share Document