Managing Cover Crops in No-Till Farming Systems

Author(s):  
Paul DeLaune
Keyword(s):  
Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 595
Author(s):  
Ted S. Kornecki ◽  
Manuel R. Reyes

The number of local small farms in the USA is on the rise due to a consumer demand for locally grown produce such as tomatoes. These farms often use small walk-behind tractors, but most field activities are still performed by hand requiring heavy physical labor. Recent efforts from USDA have been encouraging producers to adopt no-till techniques using cover crops for benefits such as reduced runoff and soil erosion, increased infiltration and water holding capacity, increased soil organic carbon, decreased soil compaction and improved weed control. However, lack of specialized no-till equipment inhibits widespread adoption of cover crops. To help small farms reduce hand labor and adoption of conservation systems with cover crops, no-till equipment such as a no-till drill, powered roller/crimper, and no-till transplanter have been developed for walk-behind tractors at the National Soil Dynamics Laboratory in Auburn (AL, USA). A replicated three-year field test (2017–2019) was conducted to evaluate effectiveness of the experimental powered coulter drill to plant cereal rye cover crop (Secale cereale, L.), patented powered roller/crimper to terminate rye, and transplanting cash crop tomato (Solanum lycopersicum L.) seedlings with a patented no-till transplanter. These three pieces of equipment were compatible with BCS 853 walk-behind tractor. The experiment was conducted on two different soils: Hiwassee sandy loam soil and Davidson clay to determine the performance of developed machines under different soil types. Results have shown that the powered coulter drill generated effective rye seed emergence (83%) for optimum biomass production. The experimental powered roller/crimper generated 95% rye termination rate three weeks after rolling, and the no-till transplanter performed as anticipated providing less than 10% variation of plant spacing uniformity. Tomato yield varied among years ranging from 15.9 Mg ha−1 to 28.3 Mg ha−1 and was related to different soil and weather conditions at each growing season. Numerically higher tomato yield on Davidson clay might be associated with less insect/pathogen pressure, higher plant available water, and reduced weed pressure due to greater cereal rye biomass production. Results from this experiment indicate that developed experimental equipment can be a practical solution for small no-till farming operations with cover crops.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


2011 ◽  
Vol 14 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hiroshi Uchino ◽  
Kazuto Iwama ◽  
Yutaka Jitsuyama ◽  
Keiko Ichiyama ◽  
Eri Sugiura ◽  
...  

2012 ◽  
Vol 27 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Steven J. Shirtliffe ◽  
Eric N. Johnson

AbstractOrganic farmers in western Canada rely on tillage to control weeds and incorporate crop residues that could plug mechanical weed-control implements. However, tillage significantly increases the risk of soil erosion. For farmers seeking to reduce or eliminate tillage, potential alternatives include mowing or using a roller crimper for terminating green manure crops (cover crops) or using a minimum tillage (min-till) rotary hoe for mechanically controlling weeds. Although many researchers have studied organic crop production in western Canada, few have studied no-till organic production practices. Two studies were recently conducted in Saskatchewan to determine the efficacy of the following alternatives to tillage: mowing and roller crimping for weed control, and min-till rotary hoeing weed control in field pea (Pisum sativum L.). The first study compared mowing and roller crimping with tillage when terminating faba bean (Vicia faba L.) and field pea green manure crops. Early termination of annual green manure crops with roller crimping or mowing resulted in less weed regrowth compared with tillage. When compared with faba bean, field pea produced greater crop biomass, suppressed weeds better and had less regrowth. Wheat yields following pea were not affected by the method of termination. Thus, this first study indicated that roller crimping and mowing are viable alternatives to tillage to terminate field pea green manure crops. The second study evaluated the tolerance and efficacy of a min-till rotary harrow in no-till field pea production. The min-till rotary hoe was able to operate in no-till cereal residues and multiple passes did not affect the level of residue cover. Field pea exhibited excellent tolerance to the min-till rotary hoe. Good weed control occurred with multiple rotary hoe passes, and pea seed yield was 87% of the yield obtained in the herbicide-treated check. Therefore, this second study demonstrated that min-till rotary hoeing effectively controls many small seeded annual weeds in the presence of crop residue and thus can reduce the need for tillage in organic-cropping systems.


1990 ◽  
Vol 82 (4) ◽  
pp. 769-772 ◽  
Author(s):  
R. L. Blevins ◽  
J. H. Herbek ◽  
W. W. Frye

Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


Author(s):  
Thilak Mallawaarachchi ◽  
Yohannis Mulu Tessema ◽  
Adam Loch ◽  
John Asafu-Adjaye

Sign in / Sign up

Export Citation Format

Share Document