In Situ Polymeric Gels for Topical Drug Delivery

Author(s):  
Paramita Paul ◽  
Gouranga Nandi
2020 ◽  
Vol 17 (8) ◽  
pp. 675-693 ◽  
Author(s):  
Neslihan Üstündağ Okur ◽  
Ayşe Pınar Yağcılar ◽  
Panoraia I. Siafaka

Background: At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. Objective: in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. Methods: This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. Results: Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. Conclusion: To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.


2011 ◽  
Vol 63 (11) ◽  
pp. 1428-1436 ◽  
Author(s):  
Sarah Fiala ◽  
Marc B. Brown ◽  
Stuart A. Jones

Author(s):  
Vikas V. Gaikwad ◽  
Abasaheb B. Patil ◽  
Madhuri V. Gaikwad

Scaffolds are used for drug delivery in tissue engineering as this system is a highly porous structure to allow tissue growth.  Although several tissues in the body can regenerate, other tissue such as heart muscles and nerves lack regeneration in adults. However, these can be regenerated by supplying the cells generated using tissue engineering from outside. For instance, in many heart diseases, there is need for heart valve transplantation and unfortunately, within 10 years of initial valve replacement, 50–60% of patients will experience prosthesis associated problems requiring reoperation. This could be avoided by transplantation of heart muscle cells that can regenerate. Delivery of these cells to the respective tissues is not an easy task and this could be done with the help of scaffolds. In situ gel forming scaffolds can also be used for the bone and cartilage regeneration. They can be injected anywhere and can take the shape of a tissue defect, avoiding the need for patient specific scaffold prefabrication and they also have other advantages. Scaffolds are prepared by biodegradable material that result in minimal immune and inflammatory response. Some of the very important issues regarding scaffolds as drug delivery systems is reviewed in this article.


2013 ◽  
Vol 2 (4) ◽  
pp. 294-303 ◽  
Author(s):  
Thierry Benvegnu ◽  
Loïc Lemiègre ◽  
Sylvain Dalençon ◽  
Jelena Jeftić

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533 ◽  
Author(s):  
Josué A. Torres-Ávalos ◽  
Leonardo R. Cajero-Zul ◽  
Milton Vázquez-Lepe ◽  
Fernando A. López-Dellamary ◽  
Antonio Martínez-Richa ◽  
...  

Design of a smart drug delivery system is a topic of current interest. Under this perspective, polymer nanocomposites (PNs) of butyl acrylate (BA), methacrylic acid (MAA), and functionalized carbon nanotubes (CNTsf) were synthesized by in situ emulsion polymerization (IEP). Carbon nanotubes were synthesized by chemical vapor deposition (CVD) and purified with steam. Purified CNTs were analyzed by FE-SEM and HR-TEM. CNTsf contain acyl chloride groups attached to their surface. Purified and functionalized CNTs were studied by FT-IR and Raman spectroscopies. The synthesized nanocomposites were studied by XPS, 13C-NMR, and DSC. Anhydride groups link CNTsf to MAA–BA polymeric chains. The potentiality of the prepared nanocomposites, and of their pure polymer matrices to deliver hydrocortisone, was evaluated in vitro by UV–VIS spectroscopy. The relationship between the chemical structure of the synthesized nanocomposites, or their pure polymeric matrices, and their ability to release hydrocortisone was studied by FT-IR spectroscopy. The hydrocortisone release profile of some of the studied nanocomposites is driven by a change in the inter-associated to self-associated hydrogen bonds balance. The CNTsf used to prepare the studied nanocomposites act as hydrocortisone reservoirs.


Sign in / Sign up

Export Citation Format

Share Document