Mast Cells in the Tumor Microenvironment

Author(s):  
Angélica Aponte-López ◽  
Samira Muñoz-Cruz
2011 ◽  
Vol 17 (22) ◽  
pp. 7015-7023 ◽  
Author(s):  
David Z. Chang ◽  
Ying Ma ◽  
Baoan Ji ◽  
Huamin Wang ◽  
Defeng Deng ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2603 ◽  
Author(s):  
Yaara Gorzalczany ◽  
Ronit Sagi-Eisenberg

Accumulating evidence has highlighted the accumulation of mast cells (MCs) in tumors. However, their impact on tumor development remained controversial. Indeed, cumulative data indicate an enigmatic role for MCs in cancer, whereby depending on the circumstances, which still need to be resolved, MCs function to promote or restrict tumor growth. By responding to multiple stimuli MCs release multiple inflammatory mediators, that contribute to the resolution of infection and resistance to envenomation, but also have the potency to promote or inhibit malignancy. Thus, MCs seem to possess the power to define tumor projections. Given this remarkable plasticity of MC responsiveness, there is an urgent need of understanding how MCs are activated in the tumor microenvironment (TME). We have recently reported on the direct activation of MCs upon contact with cancer cells by a mechanism involving an autocrine formation of adenosine and signaling by the A3 adenosine receptor. Here we summarized the evidence on the role of adenosine signaling in cancer, in MC mediated inflammation and in the MC-cancer crosstalk.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3064-3064
Author(s):  
Fengchun Yang

Abstract Mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a GTPase activating protein for Ras called neurofibromin. NF1 is a genetic disorder that affects approximately 250,000 individuals in the US, Europe, and Japan alone. Neurofibromas, the hallmark of NF1, are complex tumors characterized by tumorigenic Schwann cells, neoangiogenesis, fibrosis, and degranulating mast cells. Studies in experimental models have emphasized the role of inflammatory cells in altering the microenvironment and facilitating malignant outgrowth. Similarly, Parada (Science, 2002) found that nullizygosity of Nf1 in Schwann cells of conditional knockout mice (Krox20;Nf1flox/flox) was necessary but not sufficient for neurofibroma formation and haploinsufficiency of Nf1 in lineages within the tumor microenvironment was required for neurofibroma progression. We previously provided the first genetic, cellular, and biochemical evidence that haploinsufficiency of Nf1 alters Ras activity and cell fates in mast cells (JEM, 2000, 2001) and identified a mechanism underlying the recruitment of mast cells to tumorigenic Schwann cells (JCI 2003). However, it remains unclear whether Nf1 +/− bone marrow derived hematopoietic cells can directly contribute to neurofibroma formation in vivo. To address this question, Nf1+/− or wildtype (WT) EGFP+ bone marrow (BM) was adoptively transferred into lethally irradiated Krox20;Nf1flox/flox mice and cohorts were followed prospectively for tumor formation using positron emission tomography and computerized axial tomography. Mice transplanted with Nf1+/− but not WT BM developed progressive enlargement of the trigeminal nerve, dorsal root ganglia, peripheral nerves, and motor paralysis similar to Krox20;Nf1flox/− mice that are haploinsufficient at Nf1 in all lineages of the tumor microenvironment. Postmortem analysis revealed that Krox20;Nf1flox/flox mice transplanted with Nf1+/− BM had cellular neurofibromas containing Schwann cells, fibroblasts, blood vessels and mast cells, which closely resembled the cellular architecture of human neurofibromas. Mice transplanted with WT BM did not develop neurofibromas. These studies establish that recruitment of Nf1 +/− BM derived cells to the neurofibroma microenvironment is directly linked to neurofibroma formation and progression. Given our observations, therapies which prevent both the recruitment and the tumor promoting functions of Nf1 +/− hematopoietic cells in neurofibroma formation are currently being tested in vivo as pre-clinical trials.


2014 ◽  
Vol 8 (3) ◽  
pp. 167-176 ◽  
Author(s):  
A. Rigoni ◽  
M. P. Colombo ◽  
C. Pucillo

2018 ◽  
Vol 152 (3) ◽  
pp. 160-162
Author(s):  
Arisa Yamazaki ◽  
Koji Kobayashi ◽  
Takahisa Murata

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1465-1465
Author(s):  
Fengchun Yang ◽  
Clegg Travis ◽  
Shi Chen ◽  
Xiaohong Li ◽  
Selina A. Estwick ◽  
...  

Abstract Cutaneous neurofibromas are a hallmark of neurofibromatosis type 1 (NF1), a common genetic disorder that is caused by mutations in the NF1 gene, which functions as a GAP for p21ras. Though the pathogenesis of neurofibroma formation is not completely known, haploinsufficiency of the nonneuronal lineages (fibroblasts, mast cells and endothelial cells) in the tumor microenvironment are required for neurofibroma formation (Zhu, Science 2002). These tumors are characterized by a high concentration of degranulating mast cells (MC) closely associated with fibroblasts, endothelial cells and Schwann cells. We have recently shown that Nf1−/− Schwann cells secrete kit-ligand to recruit Nf1+/− MCs to the tumor microenvironment via hyperactivation of a p21ras-PI3K-Rac dependent pathway (Yang, JCI 2003). Further, Nf1+/− MC also promote Schwann cell invasion and proliferation. Given that collagen is synthesized by fibroblasts and is approximately 80% of the weight of neurofibromas, we tested whether Nf1+/− MC promote the proliferation and collagen synthesis of fibroblasts. Strikingly, the proliferation of Nf1+/− fibroblasts in response to Nf1+/− MC conditioned media (MCCM) was 3 fold higher than any other group tested. In a wound healing assay Nf1+/− MCCM provided potent stimulus for the migration of Nf1+/− but not WT fibroblasts. Similarly, MCCM from primary human NF1+/− MC stimulated the proliferation, migration, and collagen synthesis of human NF1+/− fibroblasts, validating that our observations in Nf1+/− murine cells faithfully phenocopy the biology of human NF1 heterozygous cells. We next established three dimensional collagen lattices containing MC and fibroblasts of the respective genotypes to evaluate extracellular matrix (ECM) reorganization given that remodeling of the ECM by inflammatory cells promotes tumorigenesis. Histological examination revealed that while MC and fibroblasts of both genotypes localized to each other, there was a 2–3 fold quantitative increase in the localization or attachment of Nf1+/− MC to Nf1+/− fibroblasts. Further, Nf1+/− MC preferentially promoted a 2–3 fold increase in the lattice contraction indicative of alteration of the ECM in lattices containing either Nf1+/− or WT fibroblasts. Given that c-kit/kit-ligand interactions between MC and fibroblasts contribute to MC-fibroblast interactions, c-kit blocking antibodies or Gleevec, an antitumor drug that inhibits both BCR/ABL and c-kit tyrosine kinases, were added to MC-fibroblast cultures. Both of these agents blocked the activity of Nf1+/− MC on fibroblast proliferation, collagen remodeling and fibroblast migration. Collectively, these studies demonstrate that murine and human NF1 (Nf1) haploinsufficient MC stimulate the proliferation, migration, collagen synthesis of Nf1+/− fibroblasts as well as remodeling the ECM. This study provides strong evidence that Gleevec may be a candidate therapy for the treatment or prevention of neurofibromas.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3772-3772
Author(s):  
Matthew T Howard ◽  
Brad Pohlman ◽  
Tao Jin ◽  
Eric Hsi

Abstract Background: The tumor microenvironment is important in the biology of follicular lymphoma (FL). In addition to macrophages, which have been shown to be associated with outcome in FL, mast cells (MCs) have the ability to influence the microenvironment through secretion of numerous biologically active molecules such as growth factors and cytokines/chemokines. Increased numbers of tumor-infiltrating MCs have been suggested as an unfavorable prognostic marker that also supercedes the predictive value of lymphoma-associated macrophages (LAM) in FL patients treated with immunochemotherapy. This study examines the effects of tumor-infiltrating MCs in FL patients at Cleveland Clinic. Design: Tissue microarrays were constructed from 94 newly diagnosed cases of FL from 09/01/1985 to 12/13/2002 that had been previously characterized for CD68+ LAMs and demonstrated that extrafollicular (EF) LAMs (>16.8/high power field) were a poor prognostic marker (Kelley T et al 2007). Immunohistochemistry for tryptase was performed on these microarrays to enumerate MCs per high powered (400x) field. In each core, all available lymphomatous tissue was evaluated (mean of 8.13 hpf/case, range 1–9). The cell counts were compared to the available clinical follow-up data, using overall survival as the measurable outcome. Results: The FL patients (44 women, 50 men) had a mean age at diagnosis of 59 years and a mean follow-up of 95.8 months. The patients were treated heterogeneously; the great majority did not receive immunochemotherapy as initial treatment. MC data was available in 91 patients. The mean MC count was 4.14 MCs/hpf (range 0–17.33). As shown previously, > 16.8 EF LAMs/hpf was a predictor of poor overall survival; hazard ratio of 2.28, 95% CI: 1.22–4.24, P = .009. In the entire cohort, MCs were not associated with overall survival. However, in the subgroup with low LAM (CD68 <16.8/hpf), increased MCs (>3.3/hpf) was associated with better overall survival, HR = 0.40, 95% CI: 0.16–0.99, P = .049. Conclusion: In our data set, increased LAMs in FL are associated with poor overall survival. Overall, MCs do not appear to predict outcome; however, in the subgroup of patients with low LAMs, increased MCs are associated with a favorable overall survival. This suggests a complex interaction between cellular constituents of the tumor microenvironment that affects patient outcome. The application of immunochemotherapy or other immunomodulatory therapies may alter these interactions and outcomes. Further work is needed to better understand these interactions and to validate biomarkers in therapy specific contexts.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3634-3634
Author(s):  
Hiroki Mizuno ◽  
Takayuki Nakayama ◽  
Yasuhiko Miyata ◽  
Shigeki Saito ◽  
Nishiwaki Satoshi ◽  
...  

Abstract Abstract 3634 Background: A variety of inflammatory cells are present the microenvironment of Hodgkin lymphoma (HL); these cells enhance the survival of lymphoma cells and suppress tumor immunity. HL is frequently associated with the mast cell infiltration that correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear. Aims: To examine whether mast cells can promote the growth of HL by modifying the tumor microenvironment and to determine whether mast cells can be a therapeutic target for HL. Methods: The human HL cell lines, L428, HDLM2, and KMH2, bone marrow-derived mast cells (BMMCs), and spleen-derived mast cells (SPMCs) from C57BL/6 mice were used in our analyses. The proliferative effect of in vitro co-culture was assessed by a colorimetric assay. HL transplantation assays were performed in NOD/SCID mice using HL cells with or without BMMCs. To study the effects of anti-cancer drugs on mast cell functions, BMMCs were treated with or without bortezomib or lenalidomide. Tumor size was measured and histopathological analyses were carried out to determine the effectiveness of the drugs. The expression profile of angiogenesis-related proteins was confirmed using the Angiogenesis Array Kit (R&D Systems, Minneapolis). To analyze the in vitro effects of bortezomib on the BMMCs, VEGF-A, CCL2, and b-hexosaminidase expressions were measured by ELISA and a b-hexosaminidase assay. The statistical significance of inter-group differences was evaluated by Student's t-test. Results: On in vitro co-culture assays, BMMCs weakly induced the proliferation of only KMH2 cells, and SPMCs did not induce the proliferation of any HL cell lines. On the in vivo transplantation assays, HL cells gave rise to tumors in NOD/SCID mice more rapidly when inoculated subcutaneously together with BMMCs than when inoculated HL cells alone. The mean size of tumors derived from inoculated HL cells with BMMCs was significantly greater than that of tumors derived from inoculated HL cells alone (e.g., L428 vs. L428 + BMMC, mean size: 108.39 mm3 vs. 225.19 mm3, respectively, at day 5; p = 0.0026). Microscopically, tumors derived from inoculated HL cells with BMMCs showed increased vasculature and fibrosis, whereas tumors derived from inoculated HL cells alone were generally hypovascularized with less fibrosis and were necrotic in most areas. An antibody array using cell lysates to determine the source of proangiogenic factors showed that HL cells minimally produced proangiogenic factors, but that mast cells produced them abundantly. Next, we examined whether bortezomib can target mast cell functions by inhibiting the secretion of mast cell products. Bortezomib inhibited degranulation of b-hexosaminidase, PGE2-induced rapid release of CCL2, and continuous release of vascular endothelial growth factor-A from mast cells, even at concentrations that did not induce cell death, and profoundly decreased expressions of angiopoietin-1, endoglin, HB-EGF and VEGF-B. On an in vivo transplantation assay in the presence or absence of bortezomib, the mean size of tumors derived from inoculated HL cells plus untreated BMMCs were significantly greater than those of tumors derived from inoculated HL cells plus bortezomib-treated BMMCs (e.g., L428 + intact BMMC vs. L428 + bortezomib-treated BMMC, mean size: 105.6 mm3 vs. 57.7 mm3, respectively, at day 6; p = 0.0255). Microscopically, tumors derived from inoculated HL cells together with intact BMMCs were highly vascularized and fibrotic, whereas tumors derived from inoculated HL cells plus bortezomib-treated BMMCs were generally not. Results from a similar analysis using lenalidomide showed that its effect on BMMCs was much lower than that of bortezomib. Discussion: Mast cells had the ability to promote the growth of HL on in vivo transplantation assay, but not on in vitro co-culture assay, indicating that there may be an indirect event via the promotion of angiogenesis that acts on the tumor microenvironment. Bortezomib effectively inhibited the mast cell-induced growth of Hodgkin's cell tumors in vivo by blocking the release of secretory granules from mast cells, but suppress of mast cells could not have a complete remission. As a treatment strategy for the future, it may be necessary to combine bortezomib with other drugs or irradiation. Conclusions: Mast cells have the ability to promote the growth of HL, and may be a promising target for the treatment of HL. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
pp. 353-370 ◽  
Author(s):  
Theoharis C. Theoharides ◽  
Konstantinos-Dionysios Alysandratos ◽  
Asimenia Angelidou ◽  
Bodi Zhang

Blood ◽  
2012 ◽  
Vol 120 (10) ◽  
pp. 2042-2054 ◽  
Author(s):  
Anja Rabenhorst ◽  
Max Schlaak ◽  
Lukas C. Heukamp ◽  
Anja Förster ◽  
Sebastian Theurich ◽  
...  

AbstractPrimary cutaneous lymphomas (PCLs) are clonal T- or B-cell neoplasms, which originate in the skin. In recent years, mast cells were described as regulators of the tumor microenvironment in different human malignancies. Here, we investigated the role of mast cells in the tumor microenvironment of PCL. We found significantly increased numbers of mast cells in skin biopsies from patients with cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma (CBCL). Mast cell infiltration was particularly prominent in the periphery, at lymphoma rims. Interestingly, CTCL and CBCL patients with a progressive course showed higher mast cell counts than stable patients, and mast cell numbers in different stages of CTCL correlated positively with disease progression. In addition, mast cell numbers positively correlated with microvessel density. Incubating primary CTCL cells with mast cell supernatant, we observed enhanced proliferation and production of cytokines. In line with our in vitro experiments, in a mouse model of cutaneous lymphoma, tumor growth in mast cell–deficient transgenic mice was significantly decreased. Taken together, these experiments show that mast cells play a protumorigenic role in CTCL and CBCL. Our data provide a rationale for exploiting tumor-associated mast cells as a prognostic marker and therapeutic target in PCL.


Sign in / Sign up

Export Citation Format

Share Document