scholarly journals Role of Mast Cell-Derived Adenosine in Cancer

2019 ◽  
Vol 20 (10) ◽  
pp. 2603 ◽  
Author(s):  
Yaara Gorzalczany ◽  
Ronit Sagi-Eisenberg

Accumulating evidence has highlighted the accumulation of mast cells (MCs) in tumors. However, their impact on tumor development remained controversial. Indeed, cumulative data indicate an enigmatic role for MCs in cancer, whereby depending on the circumstances, which still need to be resolved, MCs function to promote or restrict tumor growth. By responding to multiple stimuli MCs release multiple inflammatory mediators, that contribute to the resolution of infection and resistance to envenomation, but also have the potency to promote or inhibit malignancy. Thus, MCs seem to possess the power to define tumor projections. Given this remarkable plasticity of MC responsiveness, there is an urgent need of understanding how MCs are activated in the tumor microenvironment (TME). We have recently reported on the direct activation of MCs upon contact with cancer cells by a mechanism involving an autocrine formation of adenosine and signaling by the A3 adenosine receptor. Here we summarized the evidence on the role of adenosine signaling in cancer, in MC mediated inflammation and in the MC-cancer crosstalk.

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2107 ◽  
Author(s):  
Ralf Hass

The tumor microenvironment represents a dynamically composed matrix in which tissue-associated cancer cells are embedded together with a variety of further cell types to form a more or less separate organ-like structure. Constantly mutual interactions between cells of the tumor microenvironment promote continuous restructuring and growth in the tumor. A distinct organization of the tumor stroma also facilitates the formation of transient cancer stem cell niches, thereby contributing to progressive and dynamic tumor development. An important but heterogeneous mixture of cells that communicates among the cancer cells and the different tumor-associated cell types is represented by mesenchymal stroma-/stem-like cells (MSC). Following recruitment to tumor sites, MSC can change their functionalities, adapt to the tumor’s metabolism, undergo differentiation and synergize with cancer cells. Vice versa, cancer cells can alter therapeutic sensitivities and change metastatic behavior depending on the type and intensity of this MSC crosstalk. Thus, close cellular interactions between MSC and cancer cells can eventually promote cell fusion by forming new cancer hybrid cells. Consequently, newly acquired cancer cell functions or new hybrid cancer populations enlarge the plasticity of the tumor and counteract successful interventional strategies. The present review article highlights some important features of MSC within the tumor stroma.


2021 ◽  
Author(s):  
Nai-Wei Yao ◽  
Hsiu-Ting Lin ◽  
Ya-Lin Lin ◽  
Khamushavalli Geeviman ◽  
Fang Liao ◽  
...  

Abstract Background: Glioblastoma is the most aggressive subtype of brain tumors. The major component of tumor microenvironment in glioblastoma is tumor-associated macrophages (TAMs), which are associated with enhanced malignancy of glioblastoma. The polarization of macrophages to the pro-inflammatory M1 or anti-inflammatory M2 subtypes governed by the context of tumor microenvironment may dictate the aggressiveness and outcome of glioblastoma. Given that the immune responses to tumors vary distinctively among individuals due to intrinsic, environmental and genetic factors and that TAMs display a high level of diversity and plasticity, we aimed to examine the effects of differential polarization of TAMs on the glioblastoma development by implanting C6 glioma into brains of Sprague–Dawley (SD) and Wistar rats; these two rats have different genetic background and host microenvironment during tumor development. Methods: Sprague–Dawley (SD) and Wistar rats were implanted with C6 glioma in the brain. The measurement of tumor volumes, tumor morphology and tumor growth in C6 glioma implanted brains were measured by multi-parametric magnetic resonance imaging (MRI). Immunofluorescence staining was performed to analyze tumor angiogenesis and M1 and M2 TAMs in C6 gliomas. Results: By multi-parametric MRI measurement, C6 gliomas developed in the SD rats were characterized with enlarged tumors, accompanied with shorter animal survival. In comparison to the gliomas in Wistar rats, the accelerated tumor growth in SD rats was associated with greater extent of angiogenesis accompanied with higher levels of VEGF/VEGFR2. In support, C6 gliomas in SD rats were filtrated with TAMs characterized with a higher M2/M1 ratio, in contrast to the TAMs of a high M1/M2 ratio in Wistar rats. Attempts were made to shift the M2/M1 balance. Administration of the cytokine IFN-γ that induces M1 TAMs to SD rats greatly suppressed glioma formation, accompanied with a remarkable increase of M1 TAMs. Administration of the cytokines IL-4 plus IL-10 that induces M2 TAMs significantly promoted glioma growth in the Wistar rats, associated with an increase in the M2 TAMs. Conclusions: These results demonstrate an important role of TAMs in glioma pathogenesis and the crucial role of microenvironment in dictating the polarization of TAMs, suggesting that targeting or repolarization of TAMs may serve as an effective intervention for gliomas.


Author(s):  
Enli Yang ◽  
Xuan Wang ◽  
Zhiyuan Gong ◽  
Miao Yu ◽  
Haiwei Wu ◽  
...  

Abstract Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 986
Author(s):  
Mark R. Hanes ◽  
Carman A. Giacomantonio ◽  
Jean S. Marshall

Mast cells are important sentinel cells in host defense against infection and major effector cells in allergic disease. The role of these cells in cancer settings has been widely debated. The diverse range of mast cell functions in both immunity and tissue remodeling events, such as angiogenesis, provides multiple opportunities for mast cells to modify the tumor microenvironment. In this review, we consider both skin and breast cancer settings to address the controversy surrounding the importance of mast cells in the host response to tumors. We specifically address the key mediators produced by mast cells which impact tumor development. The role of environmental challenges in modifying mast cell responses and opportunities to modify mast cell responses to enhance anti-tumor immunity are also considered. While the mast cell’s role in many cancer contexts is complicated and poorly understood, the activities of these tissue resident and radioresistant cells can provide important opportunities to enhance anti-cancer responses and limit cancer development.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 677-677
Author(s):  
Fengchun Yang ◽  
David A. Ingram ◽  
Shi Chen ◽  
Jin Yuan ◽  
Xiaohong Li ◽  
...  

Abstract Interactions between tumorigenic cells and the microenvironment are increasingly recognized as integral to tumor progression in a range of human malignancies. However, the specific cellular mechanisms that are required to initiate these multistage processes are incompletely understood. Mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1, a pandemic autosomal dominant genetic disorder of the nervous system characterized by the development of neurofibromas. Neurofibromas are complex tumors composed of Schwann cells, fibroblasts, endothelial cells, and high concentrations of degranulating mast cells. Though neurofibromas are generally benign, plexiform neurofibromas can progress to malignancy. Genetic studies in cre/lox mice indicate that nullizygous loss of Nf1 in the tumorigenic Schwann cells (Krox20; Nf1flox/flox) is necessary, but not sufficient for neurofibroma formation when the microenvironment is wildtype. However, neurofibromas form with 100% penetrance in Krox20; Nf1flox/− mice that are heterozygous at Nf1 in all lineages of the tumor microenvironment (Science, 2002). Here, we addressed the role of the hematopoietic system in the tumor microenvironment by using adoptive transfer. Syngeneic Nf1+/− or wildtype (WT) bone marrow was transplanted into lethally irradiated Krox20;Nf1flox/flox mice. Krox20; Nf1flox/flox recipients transplanted with WT bone marrow (n=25) did not develop plexiform neurofibromas and had a normal lifespan. In contrast, Krox20; Nf1flox/flox mice transplanted with Nf1+/− bone marrow (n=25) consistently developed neurofibromas infiltrated with Nf1+/− mast cells. These mice had a 90% mortality at 14 months following transplantation. In complementary experiments, WT bone marrow was transplanted into irradiated Krox20; Nf1flox/− mice. Despite the remainder of the tumor microenvironment being heterozygous, WT bone marrow was sufficient to prevent tumor progression in Krox20; Nf1flox/− mice. To specifically assess the role of the mast cell compartment in tumor progression, Nf1+/− mice were intercrossed with two strains of naturally occurring W mutant mice that have variably diminished c-kit activity and mast cell function. Mice homozygous at the Wv locus have a greater than 90% reduction in c-kit activity, while W41/W41 mutants have approximately a 65–75% reduction in c-kit activity. Importantly, while Krox20;Nf1flox/flox mice transplanted with Nf1+/− bone marrow consistently develop plexiform neurofibromas, adoptive transfer of Nf1+/−; Wv/Wv or Nf1+/−; W41/W41 bone marrow cells into Krox20; Nf1flox/flox mice was sufficient to prevent neurofibroma formation. Collectively, these studies provide genetic evidence that the hematopoietic system and specifically mast cells are integral to plexiform neurofibroma formation in genetically engineered mice. These studies have therapeutic implications for NF1 since molecular therapies directed at the haploinsufficient hematopoietic cells, particularly the c-kit receptor tyrosine kinase, may have an important role in treating or preventing plexiform neurofibromas.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Devandir Antonio de Souza Junior ◽  
Ana Carolina Santana ◽  
Elaine Zayas Marcelino da Silva ◽  
Constance Oliver ◽  
Maria Celia Jamur

An association between mast cells and tumor angiogenesis is known to exist, but the exact role that mast cells play in this process is still unclear. It is thought that the mediators released by mast cells are important in neovascularization. However, it is not known how individual mediators are involved in this process. The major constituents of mast cell secretory granules are the mast cell specific proteases chymase, tryptase, and carboxypeptidase A3. Several previous studies aimed to understand the way in which specific mast cell granule constituents act to induce tumor angiogenesis. A body of evidence indicates that mast cell proteases are the pivotal players in inducing tumor angiogenesis. In this review, the likely mechanisms by which tryptase and chymase can act directly or indirectly to induce tumor angiogenesis are discussed. Finally, information presented here in this review indicates that mast cell proteases significantly influence angiogenesis thus affecting tumor growth and progression. This also suggests that these proteases could serve as novel therapeutic targets for the treatment of various types of cancer.


Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


2021 ◽  
Vol 22 (14) ◽  
pp. 7430
Author(s):  
Hiromi Sato ◽  
Ayaka Shimizu ◽  
Toya Okawa ◽  
Miaki Uzu ◽  
Momoko Goto ◽  
...  

The role of astrocytes in the periphery of metastatic brain tumors is unclear. Since astrocytes regulate central nervous metabolism, we hypothesized that changes in astrocytes induced by contact with cancer cells would appear in the metabolome of both cells and contribute to malignant transformation. Coculture of astrocytes with breast cancer cell supernatants altered glutamate (Glu)-centered arginine–proline metabolism. Similarly, the metabolome of cancer cells was also altered by astrocyte culture supernatants, and the changes were further amplified in astrocytes exposed to Glu. Inhibition of Glu uptake in astrocytes reduces the variability in cancer cells. Principal component analysis of the cancer cells revealed that all these changes were in the first principal component (PC1) axis, where the responsible metabolites were involved in the metabolism of the arginine–proline, pyrimidine, and pentose phosphate pathways. The contribution of these changes to the tumor microenvironment needs to be further pursued.


Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1701-1710 ◽  
Author(s):  
Ran Rostoker ◽  
Keren Bitton-Worms ◽  
Avishay Caspi ◽  
Zila Shen-Orr ◽  
Derek LeRoith

Abstract Epidemiological and experimental studies have identified hyperinsulinemia as an important risk factor for breast cancer induction and for the poor prognosis in breast cancer patients with obesity and type 2 diabetes. Recently it was demonstrated that both the insulin receptor (IR) and the IGF-IR mediate hyperinsulinemia's mitogenic effect in several breast cancer models. Although IGF-IR has been intensively investigated, and anti-IGF-IR therapies are now in advanced clinical trials, the role of the IR in mediating hyperinsulinemia's mitogenic effect remains to be clarified. Here we aimed to explore the potential of IR inhibition compared to dual IR/IGF-IR blockade on breast tumor growth. To initiate breast tumors, we inoculated the mammary carcinoma Mvt-1 cell line into the inguinal mammary fat pad of the hyperinsulinemic MKR female mice, and to study the role of IR, we treated the mice bearing tumors with the recently reported high-affinity IR antagonist-S961, in addition to the well-documented IGF-IR inhibitor picropodophyllin (PPP). Although reducing IR activation, with resultant severe hyperglycemia and hyperinsulinemia, S961-treated mice had significantly larger tumors compared to the vehicle-treated group. This effect maybe secondary to the severe hyperinsulinemia mediated via the IGF-1 receptor. In contrast, PPP by partially inhibiting both IR and IGF-IR activity reduced tumor growth rate with only mild metabolic consequences. We conclude that targeting (even partially) both IR and IGF-IRs impairs hyperinsulinemia's effects in breast tumor development while simultaneously sparing the metabolic abnormalities observed when targeting IR alone with virtual complete inhibition.


Allergy ◽  
2021 ◽  
Author(s):  
Lea Pohlmeier ◽  
Sanchaita Sriwal Sonar ◽  
Hans‐Reimer Rodewald ◽  
Manfred Kopf ◽  
Luigi Tortola

Sign in / Sign up

Export Citation Format

Share Document