High-Performance Light-Weight Concrete for 3D Printing

Author(s):  
Malek Mohammad ◽  
Eyad Masad ◽  
Thomas Seers ◽  
Sami G. Al-Ghamdi
2018 ◽  
Vol 7 (4.37) ◽  
pp. 30
Author(s):  
Nada M. F. Alwaan ◽  
. . ◽  
. .

No-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference molds in age 28 days. The growing in flexural strength for fiber reinforced mixes with fiber by vol. (0.5%, 0.75%, 1%) were (78%, 132%, 286%) respectively at age of 28 days. 


2021 ◽  
pp. 2102649
Author(s):  
Sourav Chaule ◽  
Jongha Hwang ◽  
Seong‐Ji Ha ◽  
Jihun Kang ◽  
Jong‐Chul Yoon ◽  
...  

Author(s):  
Liping Yao ◽  
Danlei Zhu ◽  
Hailiang Liao ◽  
Sheik Haseena ◽  
Mahesh kumar Ravva ◽  
...  

Due to their advantages of low-cost, light-weight, and mechanical flexibility, much attention has been focused on pi-conjugated organic semiconductors. In the past decade, although many materials with high performance has...


2018 ◽  
Vol 39 (7) ◽  
pp. 1700809 ◽  
Author(s):  
Xiao Kuang ◽  
Zeang Zhao ◽  
Kaijuan Chen ◽  
Daining Fang ◽  
Guozheng Kang ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Weikang Xu ◽  
Zhentao Zhang ◽  
Xiaomei Cai ◽  
Yazhen Hong ◽  
Tianliang Lin ◽  
...  

AbstractEffective treatment of frequent oil spills and endless discharged oily wastewater is crucial for the ecosystem and human health. In the past two decades, the collection of oil from water surface has been widely studied through the simple fabrication of superhydrophobic meshes with various coating materials, but little attention is paid to the design aspects of the meshes based oil-collecting device and practical oil collection. Here, 3D-printing devices with different configurations of (super)hydrophobic meshes, circular truncated cone (CTC), cylinder and inverted CTC, and the same inverted cone-shaped structure (below the meshes for temporary oil storage) are investigated. Results demonstrate that the CTC meshes based device especially for an oblate one not only shows higher stability and discharge of the collected oils than previous reports, but also allows floating oils to enter the (super)hydrophobic mesh faster. We anticipate that future success in developing high-performance (super)hydrophobic meshes and the further optimization of the CTC mesh-based device parameters will make our proposed device more practical for the treatment of real-life oil spills.


Sign in / Sign up

Export Citation Format

Share Document