Design aspects of (super)hydrophobic mesh based oil-collecting device with improved efficiency
AbstractEffective treatment of frequent oil spills and endless discharged oily wastewater is crucial for the ecosystem and human health. In the past two decades, the collection of oil from water surface has been widely studied through the simple fabrication of superhydrophobic meshes with various coating materials, but little attention is paid to the design aspects of the meshes based oil-collecting device and practical oil collection. Here, 3D-printing devices with different configurations of (super)hydrophobic meshes, circular truncated cone (CTC), cylinder and inverted CTC, and the same inverted cone-shaped structure (below the meshes for temporary oil storage) are investigated. Results demonstrate that the CTC meshes based device especially for an oblate one not only shows higher stability and discharge of the collected oils than previous reports, but also allows floating oils to enter the (super)hydrophobic mesh faster. We anticipate that future success in developing high-performance (super)hydrophobic meshes and the further optimization of the CTC mesh-based device parameters will make our proposed device more practical for the treatment of real-life oil spills.