Open Source Multipurpose Multimedia Annotation Tool

Author(s):  
Joed Lopes da Silva ◽  
Alan Naoto Tabata ◽  
Lucas Cardoso Broto ◽  
Marta Pereira Cocron ◽  
Alessandro Zimmer ◽  
...  
2001 ◽  
Author(s):  
Thomas Pfund ◽  
Stephane Marchand-Maillet

2017 ◽  
Vol 05 (06) ◽  
pp. E477-E483 ◽  
Author(s):  
Anastasios Koulaouzidis ◽  
Dimitris Iakovidis ◽  
Diana Yung ◽  
Emanuele Rondonotti ◽  
Uri Kopylov ◽  
...  

Abstract Background and aims Capsule endoscopy (CE) has revolutionized small-bowel (SB) investigation. Computational methods can enhance diagnostic yield (DY); however, incorporating machine learning algorithms (MLAs) into CE reading is difficult as large amounts of image annotations are required for training. Current databases lack graphic annotations of pathologies and cannot be used. A novel database, KID, aims to provide a reference for research and development of medical decision support systems (MDSS) for CE. Methods Open-source software was used for the KID database. Clinicians contribute anonymized, annotated CE images and videos. Graphic annotations are supported by an open-access annotation tool (Ratsnake). We detail an experiment based on the KID database, examining differences in SB lesion measurement between human readers and a MLA. The Jaccard Index (JI) was used to evaluate similarity between annotations by the MLA and human readers. Results The MLA performed best in measuring lymphangiectasias with a JI of 81 ± 6 %. The other lesion types were: angioectasias (JI 64 ± 11 %), aphthae (JI 64 ± 8 %), chylous cysts (JI 70 ± 14 %), polypoid lesions (JI 75 ± 21 %), and ulcers (JI 56 ± 9 %). Conclusion MLA can perform as well as human readers in the measurement of SB angioectasias in white light (WL). Automated lesion measurement is therefore feasible. KID is currently the only open-source CE database developed specifically to aid development of MDSS. Our experiment demonstrates this potential.


2009 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Attila Paksi ◽  
Andrea Kárpáti

A tanulmány röviden bemutatja a World Wide Web harmadik generációjának nevezett szemantikus hálót, a jelenleg is elérhető webes szolgáltatások tükrében. Szerzői olyan online multimédia annotációs szolgáltatásokat hasonlítanak össze, melyek alkalmazásával az együttműködő, közösségi tanulás megvalósítható. Öt különböző annotációs szolgáltatást értékelnek hat fő irányelv alapján, technológiai és pedagógiai szempontok szerint. Mind az öt szolgáltatás tartalmaz az oktatási folyamatba integrálható elemeket, de egyikük, a Viddler kiemelkedik a többi közül, mivel lehetőséget ad a videó-felvételek közösségi annotációjára. A tanulmány kitér a multimédia annotáció jövőbeni lehetőségeire is, és röviden ismerteti az EU „Információs társadalmi technológiák” című nemzetközi K+F programjának támogatásával indított KP-Lab projekt keretében fejlesztett, trialogikus tanulási modellre épülő szemantikus multimédia annotációs eszközt (Semantic Multimedia Annotation Tool, SMAT).


Author(s):  
Artem Chebotko ◽  
Yu Deng ◽  
Shiyong Lu ◽  
Farshad Fotouhi ◽  
Anthony Aristar

The development of the Semantic Web, the next-generation Web, greatly relies on the availability of ontologies and powerful annotation tools. However, there is a lack of ontology-based annotation tools for linguistic multimedia data. Existing tools either lack ontology support or provide limited support for multimedia. To fill the gap, we present an ontology-based linguistic multimedia annotation tool, OntoELAN, which features: (1) the support for OWL ontologies; (2) the management of language profiles, which allow the user to choose a subset of ontological terms for annotation; (3) the management of ontological tiers, which can be annotated with language profile terms and, therefore, corresponding ontological terms; and (4) storing OntoELAN annotation documents in XML format based on multimedia and domain ontologies. To our best knowledge, OntoELAN is the first audio/video annotation tool in the linguistic domain that provides support for ontology-based annotation. It is expected that the availability of such a tool will greatly facilitate the creation of linguistic multimedia repositories as islands of the Semantic Web of language engineering.


2013 ◽  
Vol 8 (S1) ◽  
Author(s):  
Riku Turkki ◽  
Margarita Walliander ◽  
Ville Ojansivu ◽  
Nina Linder ◽  
Mikael Lundin ◽  
...  

Eos ◽  
2017 ◽  
Vol 98 ◽  
Author(s):  
Brooks Hanson ◽  
Jeanette Panning ◽  
Randy Townsend ◽  
Paige Wooden

AGU journals will incorporate open source software to facilitate dialog among reviewers, editors and authors during peer review.


2011 ◽  
Vol 19 (1) ◽  
pp. 45-62 ◽  
Author(s):  
Stephen J.H. Yang ◽  
Jia Zhang ◽  
Addison Y.S. Su ◽  
Jeffrey J.P. Tsai

2015 ◽  
Vol 1 (2) ◽  
pp. 256-267 ◽  
Author(s):  
Ksenia Gnevsheva

When assessing a second language speaker’s nativelikeness or accentedness, researchers often employ holistic judgments (Abrahamsson & Hyltenstam 2009, Ioup et al. 1994) or auditory analysis of specific segments (Rampton 2013). Acoustic analysis, which can help quantify minute details, can be quite time-consuming when large corpora are involved. This research note describes the Accents of Non-Native English (ANNE) learner corpus which employs the open-source Language Brain and Behaviour-Corpus Annotation Tool (LaBB-CAT; Fromont & Hay 2012) that allows researchers to automatically extract timing information about segments in the corpus and process them with Praat (Boersma & Weenink 2009), facilitating large-scale acoustic analysis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fabio Giachelle ◽  
Ornella Irrera ◽  
Gianmaria Silvello

Abstract Background Semantic annotators and Natural Language Processing (NLP) methods for Named Entity Recognition and Linking (NER+L) require plenty of training and test data, especially in the biomedical domain. Despite the abundance of unstructured biomedical data, the lack of richly annotated biomedical datasets poses hindrances to the further development of NER+L algorithms for any effective secondary use. In addition, manual annotation of biomedical documents performed by physicians and experts is a costly and time-consuming task. To support, organize and speed up the annotation process, we introduce MedTAG, a collaborative biomedical annotation tool that is open-source, platform-independent, and free to use/distribute. Results We present the main features of MedTAG and how it has been employed in the histopathology domain by physicians and experts to annotate more than seven thousand clinical reports manually. We compare MedTAG with a set of well-established biomedical annotation tools, including BioQRator, ezTag, MyMiner, and tagtog, comparing their pros and cons with those of MedTag. We highlight that MedTAG is one of the very few open-source tools provided with an open license and a straightforward installation procedure supporting cross-platform use. Conclusions MedTAG has been designed according to five requirements (i.e. available, distributable, installable, workable and schematic) defined in a recent extensive review of manual annotation tools. Moreover, MedTAG satisfies 20 over 22 criteria specified in the same study.


Sign in / Sign up

Export Citation Format

Share Document