Light Deflection in GR and Gravitational Lensing

Author(s):  
E. B. Manoukian
2021 ◽  
Vol 03 (03) ◽  
pp. 2150009
Author(s):  
Gillian Foo ◽  
Jhoon Yong Tan ◽  
Edmund Yuen ◽  
Laurentcia Arlany ◽  
A. Yang ◽  
...  

As encouraged by the interesting paper “Solar eclipses as a teaching opportunity in relativity” by Overduin et al.,awe made measurements of the angular deflections of neighboring stars during the 9 March 2016 total solar eclipse as imaged by National University of Singapore (NUS) students, to verify a result of general relativity. In this project, we used these images and measured the stars’ pixel positions and transformed them to equatorial coordinates using a similar approach to Overduin et al., with a few modifications. Instead of solving to determine the pixel scale and rotation, we performed a plate solution using the software AstroImageJ which enables accounting for the image’s higher order distortion. This data is found in the image’s Flexible Image Transport System (FITS) header. Image star pair separations were then compared to their database separations after determining how the individual deflections affect angular separation. Our experimental results have large uncertainties and were deemed imprecise to confirm the effects of gravitational light deflection. We include a detailed analysis and discussion on this educational project.


2020 ◽  
Vol 02 (02) ◽  
pp. 2050010
Author(s):  
James Overduin ◽  
Kelsey Glazer ◽  
Keri McClelland ◽  
Amelia Genus ◽  
Chris Miskiewicz

Total solar eclipses represent a challenging but spectacular opportunity to introduce curious students to the wonders of general relativity through the phenomenon of light deflection (gravitational lensing). During the Great American Eclipse of 2017, we were among a small number of teams attempting to repeat Eddington’s iconic observations of 1919, which played a pivotal role in establishing Einstein’s theory as the governing theory of gravity. We were not quite successful on the observational front, but acquired an excellent composite image from a fellow astronomer. Analysis of this image allowed us to obtain a result consistent with Einstein’s theory. It is remarkable that such an experiment, which once required the resources of the British government, can now be attempted with reasonable hope of success by teachers and their students. We look forward to our next chance in 2024.


Author(s):  
Wajiha Javed ◽  
Jameela Abbas ◽  
Yashmitha Kumaran ◽  
Ali Övgün

The principal objective of this project is to investigate the gravitational lensing by asymptotically flat black holes in the framework of Horndeski theory in weak field limits. To achieve this objective, we utilize the Gauss-Bonnet theorem to the optical geometry of asymptotically flat black holes and applying the Gibbons-Werner technique to achieve the deflection angle of photons in weak field limits. Subsequently, we manifest the influence of plasma medium on deflection of photons by asymptotically flat black holes in the context of Horndeski theory. We also examine the graphical impact of deflection angle on asymptotically flat black holes in the background of Horndeski theory in plasma as well as non-plasma medium.


Author(s):  
Prasenjit Saha ◽  
Paul A. Taylor

The concept of a metric is motivated and introduced, along with the introduction of relativistic quantities of spacetime, proper time, and Einstein’s field equations. Geodesics are cast in basic form as a Hamiltonian dynamical problem, which readers are guided towards exploring numerically themselves. The specific case of the Schwarzschild metric is presented, which is applicable to space around non-rotating black holes, and orbital motion around such objects is contrasted with that of Newtonian systems. Some well-known formulas for black hole phenomena are derived, such as those for light deflection (also known as gravitational lensing) and the innermost stable orbit, and their consequences discussed.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Rahul Kumar ◽  
Shafqat Ul Islam ◽  
Sushant G. Ghosh

AbstractAmong the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in $$ D\ge 5$$ D ≥ 5 . Recently there has been a surge of interest in regularizing, a $$ D \rightarrow 4 $$ D → 4 limit of, the EGB gravity, and the resulting regularized 4D EGB gravity valid in 4D. We consider gravitational lensing by Charged black holes in the 4D EGB gravity theory to calculate the light deflection coefficients in strong-field limits $$\bar{a}$$ a ¯ and $$\bar{b}$$ b ¯ , while former increases with increasing GB parameter $$\alpha $$ α and charge q, later decrease. We also find a decrease in the deflection angle $$\alpha _D$$ α D , angular position $$\theta _{\infty }$$ θ ∞ decreases more slowly and impact parameter for photon orbits $$u_{m}$$ u m more quickly, but angular separation s increases more rapidly with $$\alpha $$ α and charge q. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Vipin Kumar Sharma ◽  
Bal Krishna Yadav ◽  
Murli Manohar Verma

AbstractWe explore a new realisation of the galactic scale dynamics via gravitational lensing phenomenon in power-law f(R) gravity theory of the type $$f(R)\propto R^{1+\delta }$$ f ( R ) ∝ R 1 + δ with $$\delta<<1$$ δ < < 1 for interpreting the clustered dark matter effects. We utilize the single effective point like potential (Newtonian potential + f(R) background potential) obtained under the weak field limit to study the combined observations of galaxy rotation curve beyond the optical disk size and their lensing profile in f(R) frame work. We calculate the magnitude of light deflection angle with the characteristic length scale (because of Noether symmetry in f(R) theories) appearing in the effective f(R) rotational velocity profile of a typical galaxy with the model parameter $$\delta \approx O(10^{-6})$$ δ ≈ O ( 10 - 6 ) constrained in previous work. For instance, we work with the two nearby controversial galaxies NGC 5533 and NGC 4138 and explore their galactic features by analysing the lensing angle profiles in f(R) background. We also contrast the magnitudes of f(R) lensing angle profiles and the relevant parameters of such galaxies with the generalised pseudo-isothermal galaxy halo model and find consistency.


Author(s):  
Bahram Mashhoon

A postulate of locality permeates through the special and general theories of relativity. First, Lorentz invariance is extended in a pointwise manner to actual, namely, accelerated observers in Minkowski spacetime. This hypothesis of locality is then employed crucially in Einstein’s local principle of equivalence to render observers pointwise inertial in a gravitational field. Field measurements are intrinsically nonlocal, however. To go beyond the locality postulate in Minkowski spacetime, the past history of the accelerated observer must be taken into account in accordance with the Bohr-Rosenfeld principle. The observer in general carries the memory of its past acceleration. The deep connection between inertia and gravitation suggests that gravity could be nonlocal as well and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein’s theory of gravitation has recently been developed. In this nonlocal gravity (NLG) theory, the gravitational field is local, but satisfies a partial integro-differential field equation. A significant observational consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. The implications of NLG are explored in this book for gravitational lensing, gravitational radiation, the gravitational physics of the Solar System and the internal dynamics of nearby galaxies as well as clusters of galaxies. This approach is extended to nonlocal Newtonian cosmology, where the attraction of gravity fades with the expansion of the universe. Thus far only some of the consequences of NLG have been compared with observation.


1997 ◽  
Vol 486 (2) ◽  
pp. 681-686 ◽  
Author(s):  
Ariyeh H. Maller ◽  
Ricardo A. Flores ◽  
Joel R. Primack

Sign in / Sign up

Export Citation Format

Share Document