Solar Energy Power Plant Investment Selection with Unbalanced Hesitant Fuzzy Linguistic MULTIMOORA Method Based Score-HeDLiSF

Author(s):  
Veysel Çoban ◽  
Sezi Çevik Onar
2013 ◽  
Vol 561 ◽  
pp. 614-619 ◽  
Author(s):  
Qing Ling Li ◽  
Xiao Qing Xie ◽  
Jun Chao ◽  
Xuan Xin ◽  
Yan Zhou

A numerical study with FLUENT software has been carried out as to air performance in the slope solar energy power plant. The velocity field, temperature and pressure fields in the solar chimney, and the simulated result were compared with the simulated result of traditional solar chimney power generating equipment. The simulation results show that distribution of the temperature field and the velocity field in slope solar energy power plant and traditional solar chimney power generating equipment. In the case of the same height, the velocity of traditional is slightly larger than the slope style's, but there is little difference. In order to achieve the same power generation effect, the overall height of slope style is more than the traditional style, but the vertical chimney height of traditional style is greater than the slope style. The cost of construction of vertical chimney is expensive, and many problems have been considered, like radix saposhnikoviae and earthquake prevention, the heat collector also need to be cleaned on time. The slope style can take full advantage of land, the height of vertical chimney will be reduced, so the construction of the chimney will be relatively easy. Rainwater can clean the heat collector when it runs down from it. All things considered. The slope solar energy power plant has more development prospects.


Solar tracking devices are quite effective for collecting maximum solar radiations but for vastly spread solar energy collection plant, their usage is suppressed due to large cost involvement. The best alternative to this problem is adjustment of tilt angle at most appropriate position. In this study monthly optimum tilt angle have been identified for a solar power plant setup-able site Kalth (φ 30.85046˚, L 77.06153˚), situated at Himachal Pradesh, India. For diffuse radiation estimation, an isotropic model has been used. By considering the impracticality involved in monthly tilt angle adjustment, various annual adjustment models have been formulated for two, three and four annual adjustments. In order to estimate the increment in solar insolation by adopting these models, Performance Enhancement (PE) have been computed from the conventional method of setting the solar collector tilt equal to latitude angle. The results show that PE is maximum for monthly optimum tilt angles followed by M-4 which is a three annual adjustment model. Based on PE requirement, any of the proposed models can be selected for setting up solar energy collection plant at suggested site.


2021 ◽  
Vol 13 (18) ◽  
pp. 10213
Author(s):  
Amirhossein Fathi ◽  
Masoomeh Bararzadeh Ledari ◽  
Yadollah Saboohi

The paper studies the optimum panel horizontal orientation angle toward the Sun and the optimum time interval of the panel’s movement. The optimum time intervals or panel movement can change the rate of input energy to the panel surface in Iran. For this purpose, a neural network has been trained to estimate the intensity of solar radiation in Iran. After model validation, the intensity of solar radiation has been estimated by selecting adequate geographical regions. Based on the intensity of sunlight, Iran has been divided into ten regions. In these regions, 40 cities have been randomly selected to study the effect of the panel’s angle variations within appropriate time intervals, as well as equal time intervals. The results show that the choice of the mounting system with the possibility of five angles’ implementation can increase the amount of solar energy between 3.9% and 7.4%. Compared to this number of angles at the equal time intervals, the amount of incoming solar energy has increased by 3% to 7%. In the first and second cases, the area of the power plant increases by about 12% to 24% compared to the yearly optimum tilt angle. Moreover, the amount of radiation incoming to the panel with the optimum operating angle is in alignment with the results of PVsyst software.


2020 ◽  
Vol 30 (3) ◽  
pp. 480-497
Author(s):  
Dmitriy S. Strebkov ◽  
Yuriy Kh. Shogenov ◽  
Nikolay Yu. Bobovnikov

Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.


Author(s):  
Yuliia Daus ◽  
Valeriy Kharchenko ◽  
Igor Viktorovich Yudaev ◽  
Vera Dyachenko ◽  
Shavkat Klychev

The object of research in the chapter is the solar power plant as the source of additional economically expedient power supply of the electrical energy consumer. The purpose of this research is to analyze the options for the layout of solar power plant, taking into account the solar energy potential of the district, the design features of the proposed location, the load curve of the consumer, and the cost of the generated electrical energy. The chapter presents the results of calculation and selection of the parameters of solar power plant elements on the roof of the consumer's production building. The chapter presents the results of research of the dependence of the cost of the electricity generated by the solar power plant on the number of installed panels, which in order to increase the realized solar energy potential of the district also allows adding photoelectric modules and accumulating devices in the layout of the operating station at tariff growth. The chapter presents the results of researching these areas, that are conducted by the authors and which are completely original.


2019 ◽  
Vol 125 ◽  
pp. 10003 ◽  
Author(s):  
Jaka Windarta ◽  
Ardhito Pratama ◽  
Denis ◽  
Agung Nugroho

Indonesia is a country that is geographically located right in the equator and variously advantage and the wide for the use of solar energy. Indonesia has a relatively high radiation level, which is 4.80 kWh / m2 / day. Cemara Island is a tourist place but does not have electricity from PLN because access to its location is still difficult to reach. So from that chosen the planning system for the use of electrical energy using solar energy. However, economic analysis is needed so that the estimated weaknesses of the off-grid solar system can be estimated so as to reduce the risk of losses. The testing of each component in the Solar Power Plant system also needs to be done to determine the condition and quality of the components to be used. The economic analysis of the Cemara Island Solar Power Plant System with an initial investment of Rp 52,553,000, in scenario 1 uses interest at 6%, then in scenario 2 without using interest. Through calculations by looking for the value of COE (Energy Cost), NPC (Net Present Cost) and BEP (Break-Even Point), so that costs can be calculated by the manager with the number of 11 managers per month.


Author(s):  
Xin Li ◽  
Yongliang Zhao ◽  
Ming Liu ◽  
Junjie Yan

Abstract The concept of coal-fired power generation aided with solar energy uses stable fossil energy to compensate the instability and intermittently of solar power and reduces the cost of concentrated solar power (CSP) by decreasing the large-scale heat storage and turbine systems of CSP. In this study, trough solar collector system (TSCS) was integrated into the low-pressure heater side of a 660 MW coal-fired power generation system. In the system in which the 6# LP heater is completely replaced by TSCS, the variation value of the steam extraction flowrate of the LP heaters and the turbine output power decrease with the reduction in loads from 100% to 60% THA, and the output power increases by approximately 1 MW under 100% THA. When TSCS completely replaces the 6# LP heater under the load of 75%, the effects of direct normal irradiance (DNI) increase and flow ratio decrease on the main operating parameters of solar-aided coal-fired power plant (SCPP) were studied. Results show that the step increase of DNI decreases the 5# steam extraction flowrate and increases the output power by nearly 3 MW. When the flow ratio decreases by 139.87 kg/s, the output power decreases by around 0.35 MW. The dynamic characteristics of SCPP under different parallel situations with the load of 75% were also studied. As the number of parallel stage increases, the decrement in 5# steam extraction flowrate and the increment in output power decrease. The response time also decreases. Our study aims to provide detailed references for the control system design and optimization of coal-fired power units aided with solar energy.


Sign in / Sign up

Export Citation Format

Share Document