Angular Momentum About the Total Body Center of Mass Computed at Different Speeds

Author(s):  
Dan Ioan Stoia ◽  
Cosmina Vigaru ◽  
Andreea Nicoara ◽  
Nicolae Herisanu
1987 ◽  
Vol 3 (3) ◽  
pp. 242-263 ◽  
Author(s):  
Richard N. Hinrichs

Ten male recreational runners were filmed using three-dimensional cinematography while running on a treadmill at 3.8 m/s, 4.5 m/s, and 5.4 m/s. A 14-segment mathematical model was used to examine the contributions of the arms to the total-body angular momentum about three orthogonal axes passing through the body center of mass. The results showed that while the body possessed varying amounts of angular momentum about all three coordinate axes, the arms made a meaningful contribution to only the vertical component (Hz). The arms were found to generate an alternating positive and negative Hzpattern during the running cycle. This tended to cancel out an opposite Hzpattern of the legs. The trunk was found to be an active participant in this balance of angular momentum, the upper trunk rotating back and forth with the arms and, to a lesser extent, the lower trunk with the legs. The result was a relatively small total-body Hzthroughout the running cycle. The inverse relationship between upper- and lower-body angular momentum suggests that the arms and upper trunk provide the majority of the angular impulse about the z axis needed to put the legs through their alternating strides in running.


1990 ◽  
Vol 6 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Inseong Hwang ◽  
Gukung Seo ◽  
Zhi Cheng Liu

This study examined the biomechanical profiles of the takeoff phase of double backward somersaults in three flight positions: seven layout double backward somersaults (L), seven twisting double backward somersaults (TW), and seven tucked double backward somersaults (TDB). Selected kinematic variables and angular momenta were calculated in order to compare the differences resulting from different aerial maneuvers. The amount of total body angular momentum about the transverse axis through the gymnasts' center of mass progressively increased from TDB to TW to L. The gymnasts performing the skill in the layout position tried to minimize the angle of block in a direction opposite the intended motion by maximizing the angle of touchdown and takeoff. In so doing, the horizontal velocity center-of-mass curve of the L showed a slowly decreasing curve compared with those of the other two somersaults while the vertical velocity curve of the L increased more slowly than the other curves during the takeoff phase. In all cases the legs played the dominant role in contributing to total angular momentum during takeoff.


2007 ◽  
Vol 23 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Witaya Mathiyakom ◽  
Jill L. McNitt-Gray ◽  
Rand R. Wilcox

Angular impulse generation is dependent on the position of the total body center of mass (CoM) relative to the ground reaction force (GRF) vector during contact with the environment. The purpose of this study was to determine how backward angular impulse was regulated during two forward translating tasks. Control of the relative angle between the CoM and the GRF was hypothesized to be mediated by altering trunk–leg coordination. Eight highly skilled athletes performed a series of standing reverse somersaults and reverse timers. Sagittal plane kinematics, GRF, and electromyograms of lower extremity muscles were acquired during the take-off phase of both tasks. The magnitude of the backward angular impulse generated during the push interval of both tasks was mediated by redirecting the GRF relative to the CoM. During the reverse timer, backward angular impulse generated during the early part of the take-off phase was negated by limiting backward trunk rotation and redirecting the GRF during the push interval. Biarticular muscles crossing the knee and hip coordinated the control of GRF direction and CoM trajectory via modulation of trunk–leg coordination.


1986 ◽  
Vol 2 (2) ◽  
pp. 78-87 ◽  
Author(s):  
Joseph Hamill ◽  
Mark D. Ricard ◽  
Dennis M. Golden

A study was undertaken to investigate the changes in total body angular momentum about a transverse axis through the center of mass that occurred as the rotational requirement in the four categories of nontwisting platform dives was increased. Three skilled subjects were filmed performing dives in the pike position, with increases in rotation in each of the four categories. Angular momentum was calculated from the initiation of the dive until the diver reached the peak of his trajectory after takeoff. In all categories of dives, the constant, flight phase total body angular momentum increased as a function of rotational requirement. Increases in the angular momentum at takeoff due to increases in the rotational requirement ranged from a factor of 3.61 times in the forward category of dives to 1.52 times in the inward category. It was found that the remote contribution of angular momentum contributed from 81 to 89% of the total body angular momentum. The trunk accounted for 80 to 90% of the local contribution. In all categories of dives except the forward 1/2 pike somersault, the remote percent contribution of the arms was the largest of all segments, ranging from 38 to 74% of the total angular momentum.


1984 ◽  
Vol 1 (3) ◽  
pp. 221-229
Author(s):  
Karen P. DePauw

This study was undertaken to investigate the total body and segmental centers of mass of individuals with Down’s syndrome. The 40 subjects were divided equally by gender into the following age groups: (a) ages 6 to 10, (b) ages 11 to 18, (c) adult females, and (d) adult males. Data on mass centroid locations were collected through a photogrammetric technique. Frontal and right sagittal-view slide photographs on each subject were digitized and the data logged into a computer program. The program calculated the segmental mass centroid locations and total body center of mass. Differences in total body and segmental center of mass locations were found between individuals with Down’s syndrome (DS) and nonhandicapped individuals. Analysis of the data on the DS children indicated that the mean center of mass location for the total body was within the range reported for nonhandicapped children. The adult DS male and female subjects were found to have a lower total body center of mass when compared to existing data on nonhandicapped adults. It was also found that the segmental mass centroid locations for the head and trunk segment of DS subjects were consistently lower than those found in nonhandicapped individuals. This finding points to an overall lowering of the center of mass found with DS subjects.


2021 ◽  
Vol 37 (6) ◽  
pp. 601-610
Author(s):  
Witaya Mathiyakom ◽  
Rand Wilcox ◽  
Jill L. McNitt-Gray

Studying how elite athletes satisfy multiple mechanical objectives when initiating well-practiced, goal-directed tasks provides insights into the control and dynamics of whole-body movements. This study investigated the coordination of multiple body segments and the reaction force (RF) generated during foot contact when regulating forward angular impulse in backward translating tasks. Six highly skilled divers performed inward somersaults (upward and backward jump with forward rotation) and inward timers (upward and backward jump without rotation) from a stationary platform. Sagittal plane kinematics and RFs were recorded simultaneously during the takeoff phase. Regulation of the forward angular impulse was achieved by redirecting the RF about the total body center of mass. Significantly more backward-directed RF was observed during the first and second peak horizontal RF of the inward somersaults than the inward timers. Modulation of the horizontal RF altered the RF direction about the center of mass and the lower-extremity segments. Backward leg and forward trunk orientation and a set of relatively large knee extensor and small hip flexor net joint moments were required for forward angular impulse generation. Understanding how the forward angular impulse is regulated in trained individuals provides insights for clinicians to consider when exploring interventions related to fall prevention.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Éanna É. Flanagan

Abstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where Mi is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l, there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ MiM−3/2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takeshi Yamaguchi ◽  
Kei Shibata ◽  
Hiromi Wada ◽  
Hiroshi Kakehi ◽  
Kazuo Hokkirigawa

AbstractHerein, we investigated the effect of friction between foot sole and floor on the external forward moment about the body center of mass (COM) in normal and shuffling gaits. Five young male adults walked with normal and shuffling gaits, under low- and high-friction surface conditions. The maximum external forward moment about the COM (MEFM-COM) in a normal gait appeared approximately at initial foot contact and was unaffected by floor condition. However, MEFM-COM in a shuffling gait under high-friction conditions exceeded that under low-friction conditions (p < 0.001). Therein, MEFM-COM increased with an increasing utilized coefficient of friction at initial foot contact; this effect was weaker during a normal gait. These findings indicate that increased friction between foot sole and floor might increase tripping risk during a shuffling gait, even in the absence of discrete physical obstacles.


2010 ◽  
Vol 09 (05) ◽  
pp. 935-943 ◽  
Author(s):  
PENG SONG ◽  
YONG-HUA ZHU ◽  
JIAN-YONG LIU ◽  
FENG-CAI MA

The stereodynamics of the title reaction on the ground electronic state X2A' potential energy surface (PES)1 has been studied using the quasiclassical trajectory (QCT) method. The commonly used polarization-dependent differential cross-sections (PDDCSs) of the product and the angular momentum alignment distribution, P(θr) and P(Φr), are generated in the center-of-mass frame using QCT method to gain insight of the alignment and orientation of the product molecules. Influence of collision energy on the stereodynamics is shown and discussed. The results reveal that the distribution of P(θr) and P(Φr) is sensitive to collision energy. The PDDCSs exhibit different collision energy dependency relationship at low and high collision energy ranges.


Sign in / Sign up

Export Citation Format

Share Document