percent contribution
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 82 ◽  
Author(s):  
F. N. Khokhar ◽  
N. Ahmed ◽  
A. Ali ◽  
K. Gabol ◽  
A. R. Khooharo ◽  
...  

Abstract The present study reports on seasonal and spatial variations in diversity, distribution and abundance of dinoflegellates and indicates the presence of HAB species in Pakistan waters. A total of 179 taxa, recorded in this study from offshore and near-shore waters, belong to 41 genera in 26 families and 10 orders. The high species count (149 species) was recorded from Manora Island offshore station (MI-1) and 105 spp, 109 spp and 115 spp were encountered from the Mubarak village offshore station (MV-1), Manora near shore station (MI-2) and Mubarak Village near-shore station (MV-2) respectively. Tripos furca was the dominant and frequently occurring species (> 1 x103 to > 25 x103 cells L-1 from coastal and >1x 105 cells L-l from near-shore stations) in addition to less abundant Alexandrium catenella, Alexandrium sp., Alexandrium minutum, and Prorocentrum micans (>103 to 25x 103cells/L). Another 44 species occurred in relatively low numbers (<103 cell L-l). Seventy species were found throughout the study period at all four stations. High number of species in three genera (Tripos (38), Protoperidinium (34) and Prorocentrum (20) was recorded. Potently toxic (16 genera 43 species) and HAB related (19 genera and 30 species) dinoflagellate taxa were also recorded. The percent contribution of dinoflagellates in total phytoplankton population generally remained below 20% except for a few instances. Manora Island stations had comparatively higher Shannon index and equitability and slightly lower dominance index. The PCA plot showed strong positive correlation among chlorophyll-a concentration, dissolved oxygen, total number of phytoplankton and dinoflagellates.


2021 ◽  
Author(s):  
Syed Farhan Raza ◽  
Sarmad Ali Khan ◽  
Muhammad Salman Habib ◽  
Naveed Ahmed ◽  
Kashif Ishfaq ◽  
...  

Abstract Friction stir welding (FSW) is a green, environmentally amicable, and solid-state joining technology. Industries are really interested in adopting FSW in its various applications e.g., automobile, aerospace, marine, construction, etc. FSW can successfully weld a wide range of materials (similar/dissimilar parent materials) including aluminum, copper, steel, different alloys from these materials, plastics, composites, and this material range is subjected to extension if FSW research efforts develop further in future. FSW of brass has already been accomplished by fewer researchers. In this research, yellow brass 405-20 is, therefore, welded with FSW that was never welded before. In this study, tool material utilized was M2 HSS that was also novel. Effect of two friction stir weld factors (FSWF), rotational speed (RS) and traverse speed (TS), was found on three output parameters i.e., weld temperature, weld strength and weld hardness. Weld temperature was found to be 63.72% of melting point of base metal. A significant improvement in friction stir weld strength (FSWS) was also measured that was found to be 82.78% of the base brass strength. Finally, weld hardness was measured which was found to be 87.80% of original brass hardness. Based on main effects of Anova Analysis, optimal FSW factors were found to be 1450 rpm and 60 mm/min resulting interestingly in maximum (max.)/optimal temperature, max./optimal weld strength, and minimum/optimal hardness. Rotational speed (RS) was found to be significant to affect the weld temperature only at the friction stir weld zone (FSWZ) with the highest percent contribution (PCR) of 65.69%. Transverse speed (TS) was found to be overall insignificant for affecting weld temperature, weld strength and hardness. However, PCR of transverse speed was found to be maximum for affecting weld strength as compared to its PCR towards both weld temperature and weld hardness. Error PCR was found to be the lowest for weld zone temperature, then for weld strength, and finally the highest for weld hardness. Interaction Plots (IPs) were also made for those FSWF which were found to be insignificant and to investigate any combined effect of FSWF on output parameters causing increased error PCR towards weld temperature, weld strength, and weld hardness.


2021 ◽  
Vol 14 (3) ◽  
pp. 1613-1631
Author(s):  
Christina Nilofer ◽  
Arumugam Mohanapriya

The outbreak of COVID-19 and its mutant variants has become a life-threatening and fatal viral disease to mankind. Several studies have been carried out to identify an effective receptor against coronavirus using clinically driven samples distinguished as hematological, immunological and biochemical biomarkers. Simultaneously, protein interfaces are being researched to understand the structural and functional mechanism of action. Therefore, we characterized and examined the interfaces of corona viral proteins using a dataset consisting of 366 homomeric and 199 heteromeric protein interfaces. The interfaces were analyzed using six parameters including interface area, interface size, van der Waal, hydrogen bond, electrostatic and total stabilizing energies. We observed the interfaces of corona viral proteins (homomer and heteromer) to be alike. Therefore, we clustered the interfaces based on the percent contribution of vdW towards total stabilizing energy as vdW energy dominant (≥60%) and vdW energy subdominant (<60%). We found 91% of interfaces to have vdW energy in dominance with large interface size [146±29 (homomer) and 122±29 (heteromer)] and interface area [1690±683 (homomer) and 1306±355 (heteromer)]. However, we also observed 9% of interfaces to have vdW energy in sub-dominance with small interface size [60±12 (homomer) and 41±20 (heteromer)] and interface area [472±174 (homomer) and 310±199 (heteromer)]. We noticed the interface area of large interfaces to be four-fold more when compared to small interfaces in homomer and heteromer. It was interesting to observe that the small interfaces of homomers to be rich in electrostatics (r2=0.50) destitute of hydrogen bond energy (r2=0.04). However, the heteromeric interfaces were equally pronounced with hydrogen bond (r2=0.70) and electrostatic (r2=0.61) energies. Hence, our earlier findings stating that the small protein interfaces are rich in electrostatic energy remaintrue with the homomeric interfaces of corona viral proteins whereas not in heteromeric interfaces.


Author(s):  
Xin Li ◽  
Guoyu Ren ◽  
Qinglong You ◽  
Suyan Wang ◽  
Wen Zhang

AbstractSoil moisture is an important variable of the climate system and is used to measure dry–wet change in hydro-climate. The warming trend has slowed in China over the past 20 years since 1998, and how the soil moisture changes in this period deserves our attention. With North China as a research region, this study uses the Global Land Data Assimilation System and ground observations to investigate the causes of changes in soil moisture during 1998–2017 versus 1961–1997. The results show that: (1) annual mean soil moisture experienced an almost continued decrease from to 1960s to 2010s, and no pause in the decrease of soil moisture over the regional warming slowdown of the past 20 years could be detected; (2) with the stabilization or even increase in solar radiation and wind speed as well as the continuous increase land surface air temperature, the impact of potential evapotranspiration on soil moisture gradually became prominent, and the impact of precipitation decreased, since 1998; (3) the percent contribution of annual potential evapotranspiration to soil moisture variation increased by 26% during 1998–2017 relative to that in 1961–1997, and the percent contribution of summer potential evapotranspiration even increased by 45%. Our results will provide insight into the land surface water budget and mechanism involved in drought development in North China.


2021 ◽  
Vol 13 (3) ◽  
pp. 1094-1101
Author(s):  
M. Parvathi Sugumari ◽  
S. Maragatham ◽  
R. Santhi ◽  
R. Swarna Priya

An insight into the balanced crop nutrition and efficient irrigation will be rewarding to attain profitable bulb yield of shallow-rooted and high nutrient requiring aggregatum onion. To develop fertilizer prescription equations(FPEs) for aggregatum onion under drip fertigation by encompassing the Soil Test Crop Response approach (STCR), a field experiment was conducted in Palaviduthi soil series with 15 treatments viz., Absolute control (T1), Blanket recommendation (60:60:30) + Farm Yard Manure (FYM) @ 12.5 t ha-1(T2), STCR based NPK fertilizer recommendation (STCR-NPK) for the targeted yield of 14 (T3),15 (T4),16 t ha-1 (T5), FYM @ 6.25 (T6), 12.5 t ha-1 (T7), STCR–NPK+FYM @ 12.5 t ha-1 for the targeted yield of 14 (T8),15 (T9),16 t ha-1 (T10), Biocompost @ 2.5 (T11), 5 t ha-1 (T12) and STCR–NPK+Biocompost @ 5 t ha-1 for the targeted yield of 14 (T13),15 (T14),16 t ha-1 (T15). The results revealed that T10 was more supercilious than others. The basic parameters were deliberated from the experimental data on total nutrient uptake, initial soil fertility status, applied fertilizer doses. The aggregatum onion (variety CO 4) required 0.43, 0.32, 0.45 Kg of N, P2O5, K2O to produce one quintal of bulb yield. The percent contribution of nutrients from soil and fertilizer was 14.01, 54.57 for N, 35.11,50.50 for P2O5 and 12.69, 70.12 for K2O, respectively. The contribution of N, P2O5, K2O from FYM and biocompost were 41.02, 16.23, 41.53 and 47.98, 15.87, 49.56 percent sequentially. Based on the above parameters, the fertilizer prescription equations were formulated for aggregatum onion under drip fertigation in Palaviduthi soil series.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nancy López-Olmedo ◽  
Ana V. Diez-Roux ◽  
Carolina Pérez-Ferrer ◽  
Francisco-Javier Prado-Galbarro ◽  
Horacio Riojas-Rodríguez ◽  
...  

Background: Little is known about the potential impact of climate change on food systems and diet. We aimed to estimate the association of changes in rainfall and temperatures with consumption of unprocessed and processed foods among residents of Mexican cities by climate region.Methods: We analyzed 3,312 participants of the 2012 Mexican National Health and Nutrition Survey with dietary intake and sociodemographic information linked to historical rainfall and temperature data collected by the Mexican National Weather Service. We classified foods as unprocessed, processed, or ultra-processed. We performed multilevel linear regression to estimate the association of annual change in rainfalls (for each 0.5 mm decrease) and temperatures (for each 0.1°C increase) at municipality level over the past 5 years with consumption of processed and unprocessed foods measured as the contribution to total energy intake. We investigated whether associations differed by climate region (tropical, temperate, and arid).Results: Each 0.5 mm annual decrease in precipitation was associated with lower consumption of unprocessed foods and higher consumption of ultra-processed foods [mean differences in percent contribution to total energy intake −0.009% (95% CI: −0.019, &lt; −0.001) and 0.011% (95% CI: 0.001, 0.021), respectively]. Each 0.1 degree Celsius annual increase in temperature was also associated with lower consumption of unprocessed and higher consumption of ultra-processed foods [mean differences in percent contribution to total energy intake was −0.03 (95% CI: −0.05, −0.01) and 0.03% (95% CI: &lt;0.01, 0.05)]. When stratified by climate region these associations were only observed in tropical regions.Conclusions: Decreases in rainfalls and increases in temperature were associated with lower consumption of unprocessed foods but higher consumption of ultra-processed foods, especially in tropical regions. Previous studies have established how food production affects the climate, our study suggests that climate change could, in turn, reinforce modern food production, closing a vicious circle with clear negative implications for planetary health.


2021 ◽  
Author(s):  
Imelda Agdeppa ◽  
Ma. Rosel Custodio ◽  
Keith Tanda

Abstract Background: This study evaluated the food and nutrient intakes of breastfeeding mothers and identified the top food sources for their nutrient intakes. Methods: This is a cross-sectional, observational, non-interventional study conducted in one of the private medical centers in Metro Manila, Philippines. Participants: The sample size included 70 mothers of healthy, term, exclusively breastfed infants aged 21-26 days at enrollment. Quantitative dietary data was collected by a 3-day non-consecutive dietary diary for each visit during the clinic hours. Mean food intakes were calculated. A software known as PC-SIDE program or PC-Software for Intake Distribution Estimation was used in the estimation of inadequate intakes. Results: The mean energy intake of breastfeeding mothers was 2516.7 kcal/day, which was 28.6% higher than the EER of 1957 kcal/day. Protein intake was inadequate (37%) while fat intake was excessive by 4%. Nutrient inadequacy is high for almost all nutrients: iron (99%), folate (96%), riboflavin (39%), vitamin B6 (63%), vitamin B12 (46%) and thiamine (22%). The top 5-food sources with highest percent contribution to energy are rice (43.1%), bread (8.1%), pork (7.7%), powdered milk (5.9%), and sweet bakery products (5%). Conclusions: There is a high prevalence of protein and micronutrient inadequacies in the diet of breastfeeding mothers, which may be explained by the low variety and nutrient-poor foods consumed by the mothers. Understanding the dietary patterns and nutrient gaps of breastfeeding mothers may help target appropriate nutritional and behavioral interventions to improve their nutritional status, and also ensure adequate levels of nutrients in their milk for the growth and development of infants.


2021 ◽  
Vol 7 (2) ◽  
pp. 187-203
Author(s):  
Muhammad Nadeem Javaid ◽  
Gulzar Ahmed

This study estimates the total factor productivity (TFP) for Pakistan at aggregate and sectoral level from 1982 to 2016 with a data set rebased at 2005-06. We employ actual returns to scale instead of the oversimplified assumption of constant returns to scale for measuring the TFP. Our results show that average economic growth during this period is 4.7 percent with 0.7 percent contribution from TFP. While, average TFP growth for Agriculture, Industry, and Services sector is 1.5, 4.6, and 4.3 percent, respectively. Besides, there is a noticeable decreasing trend in TFP as well as economic growth relative to 1980’s. Further, our analysis reveals that the physical and human capital contribution in productivity is quite negligible at aggregate and sectoral level. This implies that sizeable investments in human capital formation can further help the economy to attain high growth trajectory in the short to medium terms.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 731
Author(s):  
Xue Qiu ◽  
Mingjun Zhang ◽  
Zhiwen Dong ◽  
Shengjie Wang ◽  
Xiuxiu Yu ◽  
...  

(1) Background: The degree to which local precipitation is supplied by recycled moisture is a reflection of land surface–atmosphere interactions and a potentially significant climate feedback mechanism. This study tries to figure out the water cycle and precipitation mechanism at a mountainous region and then provides a reference for similar mountainous regions outside China. (2) Methods: The dual-isotopes and Bayes-based program MixSIAR is used to assess contributions of advected, transpirated and evaporated vapor to local precipitation. (3) Results: The average percent contribution of recycled moisture (i.e., the sum of surface evaporated vapor and transpirated vapor) to local precipitation at the Qilian Mountains during 2017 plant growing season is about 37% (the upper quartile and the lower quartile was 30% and 43%, respectively). (4) Conclusions: Although the contribution of advection vapor dominated during the plant growing season, the contribution of recycled moisture is also important in such an alpine region. Furthermore, the commonly used simple linear mixing models often yield contributions greater than 100% or less than 0% and are likely to underestimate the contribution of recycled moisture to local precipitation. Although the alternative Bayesian model is not perfect, either, it is still a big improvement.


Sign in / Sign up

Export Citation Format

Share Document