FEM Simulation of Tracks with Soil Interaction in Curvilinear Motion of Tracked Vehicle

Author(s):  
A. A. Abyzov ◽  
I. I. Berezin
2021 ◽  
Vol 346 ◽  
pp. 03099
Author(s):  
I.A. Taratorkin ◽  
M.V. Vyaznikov ◽  
A.M. Vyaznikov

A kinematic diagram of an electromechanical transmission of a high-speed tracked vehicle with two traction electric motors, on-board gearboxes and a ZK-type differential turning mechanism, which makes it possible to effectively distribute power flows between the sides during curvilinear motion, is proposed.


2020 ◽  
Vol 8 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Roman Romanenko ◽  
Vladislav Sergeev ◽  
Alexander Dmitruk

2010 ◽  
Vol 46 (4) ◽  
pp. 396-403
Author(s):  
Bing ZHAO ◽  
Zhiqiang LI ◽  
Xiuquan HAN ◽  
Jinhua LIAO ◽  
Hongliang HOU ◽  
...  

1984 ◽  
Author(s):  
Francis G. Sisk ◽  
William A. Throckmorton
Keyword(s):  

2013 ◽  
Vol 694-697 ◽  
pp. 497-502
Author(s):  
Jiang Tao Gai ◽  
Shou Dao Huang ◽  
Guang Ming Zhou ◽  
Yi Yuan

In order to search after a new way of the propulsion system of tracked vehicle, a novel structure form of electro-mechanical transmission was developed in this paper, through analyzing the advantages and disadvantages of existing projects of electric drive system for tracked vehicle. It could increase the rate of power exertion obviously and synthesize the mechanical and electrical strongpoint. And based on the structure form, an electro-mechanical transmission was designed with double electromotor added planetary mechanism of steering power coupling and gearshift, considering engineering realization. And then straight-line driving and steering performances of the transmission were calculated which proved that the novel electro-mechanical transmission could meet the requirement of tracked vehicle propulsion well.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 87
Author(s):  
Zhenxi Liu ◽  
Jiamin Chen ◽  
Xudong Zou

The piezoelectric cantilever resonator is used widely in many fields because of its perfect design, easy-to-control process, easy integration with the integrated circuit. The tip displacement and resonance frequency are two important characters of the piezoelectric cantilever resonator and many models are used to characterize them. However, these models are only suitable for the piezoelectric cantilever with the same width layers. To accurately characterize the piezoelectric cantilever resonators with different width layers, a novel model is proposed for predicting the tip displacement and resonance frequency. The results show that the model is in good agreement with the finite element method (FEM) simulation and experiment measurements, the tip displacement error is no more than 6%, the errors of the first, second, and third-order resonance frequency between theoretical values and measured results are 1.63%, 1.18%, and 0.51%, respectively. Finally, a discussion of the tip displacement of the piezoelectric cantilever resonator when the second layer is null, electrode, or silicon oxide (SiO2) is presented, and the utility of the model as a design tool for specifying the tip displacement and resonance frequency is demonstrated. Furthermore, this model can also be extended to characterize the piezoelectric cantilever with n-layer film or piezoelectric doubly clamped beam.


Author(s):  
Jing Zhang ◽  
Joselito Yam Alcaraz ◽  
Swee-Hock Yeo ◽  
Arun Prasanth Nagalingam ◽  
Abhay Gopinath

Aerospace materials experience high levels of mechanical and thermal loading, high/low cycle fatigue, and damage from foreign objects during service, which can lead to premature retirement. Mechanical surface treatments of metallic components, for example, fan blades and blisks, are proven to improve fatigue life, improve wear resistance and avoid stress corrosion by introducing work hardening, compressive residual stresses of sub-surface, and surface finishing. Vibropeening can enhance aerospace materials’ fatigue life involving the kinetic agitation of hardened steel media in a vibratory finishing machine that induces compressive stresses into the component sub-layers while keeping a finished surface. Spherical steel balls are the most widely used shape among steel-based media and have been explored for decades. However, they are not always versatile, which cannot access deep grooves, sharp corners, and intricate profiles. Steel ballcones or satellites, when mixed with round steel balls and other steel media (diagonals, pins, eclipses, cones), works very well in such areas that ball-shaped media are unable to reach. However, a methodology of study the effect of irregularly-shaped media in surface enhancement processes has not been established. This paper proposes a finite element-based model to present a methodology for the parametric study of vibratory surface enhancement with irregularly-shaped media and investigates residual stress profiles within a treated area of an Inconel component. The methodology is discussed in detail, which involves a stochastic simulation of orientation, impact force, and impact location. The contrasting effects of a high aspect ratio, or an edge contact, as opposed to rounded and oblique contacts are demonstrated, with further analysis on the superposition of these effects. Finally, the simulation results are compared with actual residual stress measurements and was found to have a max percent difference of 34% up to 20 [Formula: see text]m below the media surface.


Sign in / Sign up

Export Citation Format

Share Document