scholarly journals Modeling the Piezoelectric Cantilever Resonator with Different Width Layers

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 87
Author(s):  
Zhenxi Liu ◽  
Jiamin Chen ◽  
Xudong Zou

The piezoelectric cantilever resonator is used widely in many fields because of its perfect design, easy-to-control process, easy integration with the integrated circuit. The tip displacement and resonance frequency are two important characters of the piezoelectric cantilever resonator and many models are used to characterize them. However, these models are only suitable for the piezoelectric cantilever with the same width layers. To accurately characterize the piezoelectric cantilever resonators with different width layers, a novel model is proposed for predicting the tip displacement and resonance frequency. The results show that the model is in good agreement with the finite element method (FEM) simulation and experiment measurements, the tip displacement error is no more than 6%, the errors of the first, second, and third-order resonance frequency between theoretical values and measured results are 1.63%, 1.18%, and 0.51%, respectively. Finally, a discussion of the tip displacement of the piezoelectric cantilever resonator when the second layer is null, electrode, or silicon oxide (SiO2) is presented, and the utility of the model as a design tool for specifying the tip displacement and resonance frequency is demonstrated. Furthermore, this model can also be extended to characterize the piezoelectric cantilever with n-layer film or piezoelectric doubly clamped beam.

2013 ◽  
Vol 395-396 ◽  
pp. 945-948
Author(s):  
Chin Joo Tan

Low formation loads are desirable in metal stamping industries as it reduces the press capacity of the machine and the tooling cost. In the previous study, the author had successfully developed a 2-stage end formation process of a round tube into a square section having small corner radii. However, the formation load in this process increased linearly with the punch stroke in the 1st stage due to the continuous expansion of the tube end by the conical die. Hence, buckling and cracks occurred at the circular section and the bottom end of the square section respectively when the punch stroke was excessive. In this study, the author proposes a circular die having a conical bottom replacing the conical die for the expansion of the tube end. Although the formation load increases when the tube end is expanded at the conical bottom, the amount of increase becomes small when the tube end reaches the circular section of the die due to its constant diameter. At the circular section, the tube end curls and wraps over the die when the punch stroke is increased. In the 2nd stage, the squaring process is performed with a conical bottom square punch and a taper square die for the two different expanded tubes i.e. the one formed with the conical die and the one formed with the conical bottom circular die. Both Finite Element Method (FEM) simulation and experiment were performed to evaluate these two processes. The distribution of plastic strains, forming loads and product appearances are investigated. With the circular die, the maximum forming loads are successfully reduced by 20% and 33% in the 1st and the 2nd stages respectively in the experiment when compared to the ones formed with the conical die. No buckling and cracks are observed for the tube formed with the circular die.


2011 ◽  
Vol 403-408 ◽  
pp. 1183-1187
Author(s):  
N. Ramakrishnan ◽  
Harshal B. Nemade ◽  
Roy Paily Palathinkal

Surface acoustic wave (SAW) sensors form an important class of micro sensors in the microelecto mechanical systems (MEMS) family. Mass loading effect of a sensing medium is one of the prime sensing principles in SAW sensors. Recently we reported mass loading effect of high aspect ratio nano-pillars attached to a SAW resonator. We observed increase in resonance frequency of the SAW resonator in addition to the general mass loading characteristics. We concluded that when the resonance frequency of the pillar is equal to the SAW resonator frequency, the resonance frequency shift caused by mass loading of pillar tends to a negligible value. When such resonating pillars are used as sensing medium in SAW sensors, even a very small change in the dimension of the pillar will offer significant resonance frequency shift. Accordingly, high sensitive SAW sensors can be developed. However in practice it’s quite difficult to manufacture nano-pillars with accurate dimensions such that they resonate with SAW resonator. There is more probability that the pillars may closely resonate with SAW device and offer mass loading. In the present work we have extended our earlier work and performed finite element method (FEM) simulation to study the insight physics of the closely resonating pillars and their effects on acoustic wave propagating on SAW substrate. In this paper we present the discussion on the resonance effects of typical closely resonating pillars on resonance frequency spectrum of the SAW resonator and observations in the pressure wave at the contact surface of the pillar and SAW resonator substrate. It is observed that when the nano-pillars closely resonate with SAW resonator, the pillar oscillations combine with waves propagating in the substrate and introduce beat frequencies. The results and discussion of this paper adds additional information in designing SAW based coupled resonating systems.


2009 ◽  
Vol 16-19 ◽  
pp. 515-519
Author(s):  
Hua Xiang ◽  
Xin Cun Zhuang ◽  
Zhen Zhao

Extrusion force plays a significant role on sheet metal extrusion process. It is characterized by various process parameters including material properties, extrusion ratio, friction, tool shape etc. In this paper, a reasonable FEM model of sheet metal extrusion process was established and validated by comparing the results of simulation and experiment firstly. Based on the reliable model, the effect on extrusion force of various process parameters was investigated with orthogonal experimental design combined FEM simulation. The work presented in this paper has laid certain foundation for further work of modeling and optimizing extrusion force.


2021 ◽  
Author(s):  
Gurpreet Singh Gill ◽  
Sanjay Kumar ◽  
Ravindra Mukhiya ◽  
Vinod Kumar Khanna

Abstract Capacitive Micromachined Ultrasonic Transducer (CMUT) provides an alternative to commercial piezoelectric-based ultrasonic transducers due to its wide bandwidth, improved efficiency, sensitivity, and design flexibility [1, 2]. In this paper, Finite Element Method-based design and simulations of circular capacitive micromachined ultrasonic transducer (CMUT) is presented. The FEM simulation of air-coupled CMUT was accomplished by using MEMCAD tools CoventorWare® and COMSOL™. The resonance frequency of 3.9 MHz was achieved for the designed circular CMUT device. A favourable agreement was found for the resonance frequency and pull-in voltage of the device using MEMSCAD tools and analytical calculations. For the proposed CMUT design, a circular cavity will be formed inside the glass substrate. Then, a free-standing membrane will be released using active layer of silicon-on-insulator (SOI) wafer. The bulk silicon of SOI wafer will be removed after bonding it on the glass substrate using anodic bonding technique as described in fabrication process flow for CMUT.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Nguyen Vu Quynh

This paper proposes a fuzzy PI controller to control the speed of a permanent magnet synchronous motor (PMSM). The structure of the system includes the speed loop controller (SLC) and the current loop controller (CLC). The speed loop controller is the fuzzy PI and standard model (SM). The CLC includes vector control and the space vector pulse width modulation (SVPWM). It compiles two closed-loop control systems for the PMSM. This research uses a very high-speed integrated circuit hardware description language (VHDL) to implement the proposed algorithm and embed it into Matlab/Simulink for simulation. Based on the PMSM parameter, this article tests the controller’s correctness with some of the load cases by changing the combined inertia and viscous friction of rotor and load. After success in simulation, the system is tested again by experiment on the FPGA kit. The simulation and experiment results show that when the load changes, the PMSM speed is still stable. The novelty of this research is that it compares two kinds of controllers between simulation and experiment results.


2001 ◽  
Vol 7 (S2) ◽  
pp. 484-485
Author(s):  
Ling Xiao ◽  
Zhuguan Liang ◽  
Yawen Li ◽  
Jian Wang ◽  
Kailin Zhou ◽  
...  

In the paper, we firstly publish a new method of internal micrographic visualization of semiconductor and IC. The quality and reliability of the semiconductor materials (SM) and the integrated circuits (IC) have always been concerned Having a high resolution, high reliable and nondestructive detection method is the key element for their improvements.Silicon oxide layers are used to provide the electrical insulation in the multi-structured ICs. The IC device surfaces are often protected by silicon oxide and silicon nitride layers. Therefore, these insulation layers also cover any inhomogeneity and defect located within the IC devices. It is necessary to have an examining method to detect those defects that are under the insulation layers without damaging the samples. However, the conventional scanning electron microscope (SEM) cannot be utilized to image and examine the surfaces that are positioned below the insulation layers.Novel nondestructive and contactless method has been developed in our laboratory to obtain the internal micrograph that crosses the surface of the semiconductor material and the integrated circuit.


Author(s):  
Ramizi Mohamed ◽  
Mahidur R. Sarker ◽  
Azah Mohamed

<p>Harvesting few amount of charge from environmental ambient sources namely, wind, thermal, heat, vibration, solar utilizing micro scale energy harvesting devices, offers vast view of powering for numerous portable low power electronic devices. However, power harvesting using piezoelectric crystal from low power ambient source nowdays has increasing popularity with the advantages of low cost, long life time, stability and clean energy.  Recent trends have shown that most researchers are interested in designing a low resonance frequency vibration based energy harvesting devices despite of its challenges ahead. In this paper, a low frequency based rectangular shape piezoelectric cantilever beam has been developed for energy harvesting applications. The proposed vibration based low frequency cantilever beam using piezoelectric element has been developed by finite element analysis (FEA) employing COMSOL Multiphysics platform. The main goal of the study is to analyze the outcome of geometric model of a piezoelectric cantilever beam and to calculate the resonance frequency of the structure according to its length. The material of PZT-5H, has been considered to enhance the efficiency of the low frequency based cantilever beam. Finally, the proposed result is compared with other existing works.</p>


2017 ◽  
Vol 4 (3) ◽  
pp. 4477-4490 ◽  
Author(s):  
A. Mukhanov ◽  
A. Abdigaliyev ◽  
B. Jangeldinov ◽  
M. Zhussip ◽  
R. Zhapparov ◽  
...  

2017 ◽  
Vol 730 ◽  
pp. 580-586
Author(s):  
Qing Ying Li ◽  
Yong Jiu Zhu

The application of piezoelectric ceramic material in de-icing technique of aircrafts is presented in numerical simulation and experiment methods. Firstly, the ice properties are introduced briefly as the evaluation of device design. Then, modal simulation of the testing skin of NACA 0030 is performed to determine the position where the piezoelectric ceramics fix. The resonance frequency as the driving frequency in the experiment is calculated in harmonic analysis with the actuators bonding on the testing skin model. Moreover, piezoelectric de-icing rig is fabricated as the modeling results. It is shown that the driving frequency agrees well with the calculated resonance frequency, and the ice can be removed when the driving frequency is 1530 Hz and the driving voltage is 650 V. In addition, design factors as material properties, size of the ceramics, and excitation voltage are discussed. From the numerical calculation, the stress will vary with different piezoelectric ceramic materials and sizes of the ceramics. It will decrease with the increase of thickness of the piezoelectric ceramics, but increase linearly with the increase of the voltage. Therefore it is considerable to choose design parameters for piezoelectric de-icing systems.


Sign in / Sign up

Export Citation Format

Share Document