Design and Analysis of a Novel Structure Form of Electro-Mechanical Transmission

2013 ◽  
Vol 694-697 ◽  
pp. 497-502
Author(s):  
Jiang Tao Gai ◽  
Shou Dao Huang ◽  
Guang Ming Zhou ◽  
Yi Yuan

In order to search after a new way of the propulsion system of tracked vehicle, a novel structure form of electro-mechanical transmission was developed in this paper, through analyzing the advantages and disadvantages of existing projects of electric drive system for tracked vehicle. It could increase the rate of power exertion obviously and synthesize the mechanical and electrical strongpoint. And based on the structure form, an electro-mechanical transmission was designed with double electromotor added planetary mechanism of steering power coupling and gearshift, considering engineering realization. And then straight-line driving and steering performances of the transmission were calculated which proved that the novel electro-mechanical transmission could meet the requirement of tracked vehicle propulsion well.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 140
Author(s):  
Abdellatif Bouazzaoui ◽  
Ahmed A. H. Abdellatif ◽  
Faisal A. Al-Allaf ◽  
Neda M. Bogari ◽  
Saied Al-Dehlawi ◽  
...  

The current COVID-19 pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has raised significant economic, social, and psychological concerns. The rapid spread of the virus, coupled with the absence of vaccines and antiviral treatments for SARS-CoV-2, has galvanized a major global endeavor to develop effective vaccines. Within a matter of just a few months of the initial outbreak, research teams worldwide, adopting a range of different strategies, embarked on a quest to develop effective vaccine that could be effectively used to suppress this virulent pathogen. In this review, we describe conventional approaches to vaccine development, including strategies employing proteins, peptides, and attenuated or inactivated pathogens in combination with adjuvants (including genetic adjuvants). We also present details of the novel strategies that were adopted by different research groups to successfully transfer recombinantly expressed antigens while using viral vectors (adenoviral and retroviral) and non-viral delivery systems, and how recently developed methods have been applied in order to produce vaccines that are based on mRNA, self-amplifying RNA (saRNA), and trans-amplifying RNA (taRNA). Moreover, we discuss the methods that are being used to enhance mRNA stability and protein production, the advantages and disadvantages of different methods, and the challenges that are encountered during the development of effective vaccines.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 488
Author(s):  
Hujun Jia ◽  
Mengyu Dong ◽  
Xiaowei Wang ◽  
Shunwei Zhu ◽  
Yintang Yang

A novel 4H-SiC MESFET was presented, and its direct current (DC), alternating current (AC) characteristics and power added efficiency (PAE) were studied. The novel structure improves the saturation current (Idsat) and transconductance (gm) by adding a heavily doped region, reduces the gate-source capacitance (Cgs) by adding a lightly doped region and improves the breakdown voltage (Vb) by embedding an insulated region (Si3N4). Compared to the double-recessed (DR) structure, the saturation current, the transconductance, the breakdown voltage, the maximum oscillation frequency (fmax), the maximum power added efficiency and the maximum theoretical output power density (Pmax) of the novel structure is increased by 24%, 21%, 9%, 11%, 14% and 34%, respectively. Therefore, the novel structure has excellent performance and has a broader application prospect than the double recessed structure.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhi Zong ◽  
Yujun Wei ◽  
Jiang Ren ◽  
Long Zhang ◽  
Fangfang Zhou

AbstractThe outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious public health concern. Patients with cancer have been disproportionately affected by this pandemic. Increasing evidence has documented that patients with malignancies are highly susceptible to severe infections and mortality from COVID-19. Recent studies have also elucidated the molecular relationship between the two diseases, which may not only help optimize cancer care during the pandemic but also expand the treatment for COVID-19. In this review, we highlight the clinical and molecular similarities between cancer and COVID-19 and summarize the four major signaling pathways at the intersection of COVID-19 and cancer, namely, cytokine, type I interferon (IFN-I), androgen receptor (AR), and immune checkpoint signaling. In addition, we discuss the advantages and disadvantages of repurposing anticancer treatment for the treatment of COVID-19.


2019 ◽  
Vol 1 (1) ◽  
pp. 43-56
Author(s):  
Siti Rukiyah

This study discusses in depth about the moral values of responsibility in the novel Laskar Pelangi. Furthermore, the proposed related to the socio-cultural background of the authors in the creation of novel Laskar Pelangi effect on moral values. In addition, also discussed the author's view of the world related to the teachings of the value of responsibility. This research uses a qualitative approach with content analysis method. The results showed that the value of responsibility based on the novel structure consisting of man's relationship to himself, namely in terms of character and characterization. The characters are displayed Andrea Hirata bring the characters responsible for the thoughts, attitudes, and behavior. From a review of genetic structuralism, the value of responsibility based on social and cultural background, knowledge systems also influence the social and cultural life. Belitung people's livelihood systems are revealed also shape the character responsible. The author's world view of morals includes the value of self-existence, self-esteem, self-confidence, fear, longing, and responsibility.


2014 ◽  
Vol 1064 ◽  
pp. 89-94
Author(s):  
Mohammed Ibrahim Mohamed

In this paper, the novel structure of carbon nanocoils were synthesized successfully by catalytic thermal decomposition of acetylene in CVD reactor under inert atmospheric pressure. Fe as a catalyst coated alumina beads used as substrate , both were placed inside a cylindrical shape stainless steel mesh SSC and located at the mid of CVD reactor. Preliminary study of application of prepared carbon nanocoil in synthesis of photodiode showed that the photodiode has a good rectification and the forward current obeys to tunneling-recombination model.


Author(s):  
Johnathon Garcia ◽  
Kooktae Lee

Abstract In this paper, a novel snake like robot design is presented and analyzed. The structure described desires to obtain a robot that is most like a snake found in nature. This is achieved with the combination of both rigid and soft link structures by implementing a 3D printed rigid link and a soft cast silicone skin. The proposed structure serves to have a few mechanical improvements while maintaining the positives of previous designs. The implementation of the silicone skin presents the opportunity to use synthetic scales and directional friction. The design modifications of this novel design are analyzed on the fronts of the kinematics and minimizing power loss. Minimization of power loss is done through a numerical minimization of three separate parameters with the smallest positive power loss being used. This results in the minimal power loss per unit distance. This research found that the novel structure presented can be effectively described and modeled, such that they could be applied to a constructed model.


Author(s):  
Y S Hu ◽  
H J Wei ◽  
J Xu ◽  
P K Wan ◽  
F Wu ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 981 ◽  
Author(s):  
Zexuan Wang ◽  
Kunfeng Zhao ◽  
Bei Xiao ◽  
Peng Gao ◽  
Dannong He ◽  
...  

Monolithic catalysts have great industrial application prospects compared to powdered catalysts due to their low pressure drop, the high efficiency of mass and heat transfer, and recyclability. Deposition of active phases on the monolithic carriers dramatically increases the utilization rate and has been attracting continuous attention. In this paper, we reviewed the traditional (impregnation, coating, and spraying) and novel (hydrothermal and electrodeposition) strategies of surface deposition integration, analyzed the advantages and disadvantages of both ways, and then prospected the possible directions for future development of integration technologies.


Author(s):  
Yusuke Sugawara ◽  
Sayaka Shiota ◽  
Hitoshi Kiya

AbstractIt is well-known that a number of convolutional neural networks (CNNs) generate checkerboard artifacts in both of two processes: forward-propagation of upsampling layers and backpropagation of convolutional layers. A condition for avoiding the artifacts is proposed in this paper. So far, these artifacts have been studied mainly for linear multirate systems, but the conventional condition for avoiding them cannot be applied to CNNs due to the non-linearity of CNNs. We extend the avoidance condition for CNNs and apply the proposed structure to typical CNNs to confirm whether the novel structure is effective. Experimental results demonstrate that the proposed structure can perfectly avoid generating checkerboard artifacts while keeping the excellent properties that CNNs have.


Sign in / Sign up

Export Citation Format

Share Document