Sustainable Manufacturing and Technology: The Development and Evaluation

Author(s):  
Panitas Sureeyatanapas ◽  
Jian-Bo Yang
2012 ◽  
Vol 78 (9) ◽  
pp. 798-804 ◽  
Author(s):  
Yuji MIZUNO ◽  
Yusuke KISHITA ◽  
Haruna WADA ◽  
Shinichi FUKUSHIGE ◽  
Yasushi UMEDA

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


2021 ◽  
Vol 13 (12) ◽  
pp. 6944
Author(s):  
Emma Anna Carolina Emanuelsson ◽  
Aurelie Charles ◽  
Parimala Shivaprasad

With stringent environmental regulations and a new drive for sustainable manufacturing, there is an unprecedented opportunity to incorporate novel manufacturing techniques. Recent political and pandemic events have shown the vulnerability to supply chains, highlighting the need for localised manufacturing capabilities to better respond flexibly to national demand. In this paper, we have used the spinning mesh disc reactor (SMDR) as a case study to demonstrate the path forward for manufacturing in the post-Covid world. The SMDR uses centrifugal force to allow the spread of thin film across the spinning disc which has a cloth with immobilised catalyst. The modularity of the design combined with the flexibility to perform a range of chemical reactions in a single equipment is an opportunity towards sustainable manufacturing. A global approach to market research allowed us to identify sectors within the chemical industry interested in novel reactor designs. The drivers for implementing change were identified as low capital cost, flexible operation and consistent product quality. Barriers include cost of change (regulatory and capital costs), limited technical awareness, safety concerns and lack of motivation towards change. Finally, applying the key features of a Sustainable Business Model (SBM) to SMDR, we show the strengths and opportunities for SMDR to align with an SBM allowing for a low-cost, sustainable and regenerative system of chemical manufacturing.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3789
Author(s):  
Michele Lanzetta ◽  
Marco Picchi Picchi Scardaoni ◽  
Armin Gharibi ◽  
Claudia Vivaldi

This paper explores the modeling of incipient cutting by Abaqus, LS-Dyna, and Ansys Finite Element Methods (FEMs), by comparing also experimentally the results on different material classes, including common aluminum and steel alloys and an acetal polymer. The target application is the sustainable manufacturing of gecko adhesives by micromachining a durable mold for injection molding. The challenges posed by the mold shape include undercuts and sharp tips, which can be machined by a special diamond blade, which enters the material, forms a chip, and exits. An analytical model to predict the shape of the incipient chip and of the formed grove as a function of the material properties and of the cutting parameters is provided. The main scientific merit of the current work is to approach theoretically, numerically, and experimentally the very early phase of the cutting tool penetration for new sustainable machining and micro-machining processes.


Author(s):  
Osman Gencel ◽  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Mucahit Sutcu ◽  
Ertugrul Erdogmus ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longfei Lin ◽  
Mengtian Fan ◽  
Alena M. Sheveleva ◽  
Xue Han ◽  
Zhimou Tang ◽  
...  

AbstractOptimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon–carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon–carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.


Sign in / Sign up

Export Citation Format

Share Document