Solving 0-1 Bi-Objective Multi-dimensional Knapsack Problems Using Binary Genetic Algorithm

Author(s):  
Ozgur Kabadurmus ◽  
M. Fatih Tasgetiren ◽  
Hande Oztop ◽  
M. Serdar Erdogan
Author(s):  
Alok Kumar Shukla ◽  
Pradeep Singh ◽  
Manu Vardhan

The explosion of the high-dimensional dataset in the scientific repository has been encouraging interdisciplinary research on data mining, pattern recognition and bioinformatics. The fundamental problem of the individual Feature Selection (FS) method is extracting informative features for classification model and to seek for the malignant disease at low computational cost. In addition, existing FS approaches overlook the fact that for a given cardinality, there can be several subsets with similar information. This paper introduces a novel hybrid FS algorithm, called Filter-Wrapper Feature Selection (FWFS) for a classification problem and also addresses the limitations of existing methods. In the proposed model, the front-end filter ranking method as Conditional Mutual Information Maximization (CMIM) selects the high ranked feature subset while the succeeding method as Binary Genetic Algorithm (BGA) accelerates the search in identifying the significant feature subsets. One of the merits of the proposed method is that, unlike an exhaustive method, it speeds up the FS procedure without lancing of classification accuracy on reduced dataset when a learning model is applied to the selected subsets of features. The efficacy of the proposed (FWFS) method is examined by Naive Bayes (NB) classifier which works as a fitness function. The effectiveness of the selected feature subset is evaluated using numerous classifiers on five biological datasets and five UCI datasets of a varied dimensionality and number of instances. The experimental results emphasize that the proposed method provides additional support to the significant reduction of the features and outperforms the existing methods. For microarray data-sets, we found the lowest classification accuracy is 61.24% on SRBCT dataset and highest accuracy is 99.32% on Diffuse large B-cell lymphoma (DLBCL). In UCI datasets, the lowest classification accuracy is 40.04% on the Lymphography using k-nearest neighbor (k-NN) and highest classification accuracy is 99.05% on the ionosphere using support vector machine (SVM).


Author(s):  
I Wayan Supriana

Knapsack problems is a problem that often we encounter in everyday life. Knapsack problem itself is a problem where a person faced with the problems of optimization on the selection of objects that can be inserted into the container which has limited space or capacity. Problems knapsack problem can be solved by various optimization algorithms, one of which uses a genetic algorithm. Genetic algorithms in solving problems mimicking the theory of evolution of living creatures. The components of the genetic algorithm is composed of a population consisting of a collection of individuals who are candidates for the solution of problems knapsack. The process of evolution goes dimulasi of the selection process, crossovers and mutations in each individual in order to obtain a new population. The evolutionary process will be repeated until it meets the criteria o f an optimum of the resulting solution. The problems highlighted in this research is how to resolve the problem by applying a genetic algorithm knapsack. The results obtained by the testing of the system is built, that the knapsack problem can optimize the placement of goods in containers or capacity available. Optimizing the knapsack problem can be maximized with the appropriate input parameters.


2012 ◽  
Vol 09 ◽  
pp. 422-431 ◽  
Author(s):  
MOHAMMAD JALALI VARNAMKHASTI ◽  
LAI SOON LEE

In this study, a new technique is presented for choosing mate chromosomes during sexual selection in a genetic algorithm. The population is divided into groups of males and females. During the sexual selection, the female chromosome is selected by the tournament selection while the male chromosome is selected based on the hamming distance from the selected female chromosome, fitness value or active genes. Computational experiments are conducted on the proposed technique and the results are compared with some selection mechanisms commonly used for solving multidimensional 0/1 knapsack problems published in the literature.


2016 ◽  
Vol 2 (3/4) ◽  
pp. 235
Author(s):  
Smita Rani Parija ◽  
Sudhansu Sekhar Singh ◽  
Prasanna Kumar Sahu

Sign in / Sign up

Export Citation Format

Share Document