A New Hybrid Feature Subset Selection Framework Based on Binary Genetic Algorithm and Information Theory

Author(s):  
Alok Kumar Shukla ◽  
Pradeep Singh ◽  
Manu Vardhan

The explosion of the high-dimensional dataset in the scientific repository has been encouraging interdisciplinary research on data mining, pattern recognition and bioinformatics. The fundamental problem of the individual Feature Selection (FS) method is extracting informative features for classification model and to seek for the malignant disease at low computational cost. In addition, existing FS approaches overlook the fact that for a given cardinality, there can be several subsets with similar information. This paper introduces a novel hybrid FS algorithm, called Filter-Wrapper Feature Selection (FWFS) for a classification problem and also addresses the limitations of existing methods. In the proposed model, the front-end filter ranking method as Conditional Mutual Information Maximization (CMIM) selects the high ranked feature subset while the succeeding method as Binary Genetic Algorithm (BGA) accelerates the search in identifying the significant feature subsets. One of the merits of the proposed method is that, unlike an exhaustive method, it speeds up the FS procedure without lancing of classification accuracy on reduced dataset when a learning model is applied to the selected subsets of features. The efficacy of the proposed (FWFS) method is examined by Naive Bayes (NB) classifier which works as a fitness function. The effectiveness of the selected feature subset is evaluated using numerous classifiers on five biological datasets and five UCI datasets of a varied dimensionality and number of instances. The experimental results emphasize that the proposed method provides additional support to the significant reduction of the features and outperforms the existing methods. For microarray data-sets, we found the lowest classification accuracy is 61.24% on SRBCT dataset and highest accuracy is 99.32% on Diffuse large B-cell lymphoma (DLBCL). In UCI datasets, the lowest classification accuracy is 40.04% on the Lymphography using k-nearest neighbor (k-NN) and highest classification accuracy is 99.05% on the ionosphere using support vector machine (SVM).

Author(s):  
Maria Mohammad Yousef ◽  

Generally, medical dataset classification has become one of the biggest problems in data mining research. Every database has a given number of features but it is observed that some of these features can be redundant and can be harmful as well as disrupt the process of classification and this problem is known as a high dimensionality problem. Dimensionality reduction in data preprocessing is critical for increasing the performance of machine learning algorithms. Besides the contribution of feature subset selection in dimensionality reduction gives a significant improvement in classification accuracy. In this paper, we proposed a new hybrid feature selection approach based on (GA assisted by KNN) to deal with issues of high dimensionality in biomedical data classification. The proposed method first applies the combination between GA and KNN for feature selection to find the optimal subset of features where the classification accuracy of the k-Nearest Neighbor (kNN) method is used as the fitness function for GA. After selecting the best-suggested subset of features, Support Vector Machine (SVM) are used as the classifiers. The proposed method experiments on five medical datasets of the UCI Machine Learning Repository. It is noted that the suggested technique performs admirably on these databases, achieving higher classification accuracy while using fewer features.


2020 ◽  
Vol 4 (1) ◽  
pp. 29
Author(s):  
Sasan Sarbast Abdulkhaliq ◽  
Aso Mohammad Darwesh

Nowadays, people from every part of the world use social media and social networks to express their feelings toward different topics and aspects. One of the trendiest social media is Twitter, which is a microblogging website that provides a platform for its users to share their views and feelings about products, services, events, etc., in public. Which makes Twitter one of the most valuable sources for collecting and analyzing data by researchers and developers to reveal people sentiment about different topics and services, such as products of commercial companies, services, well-known people such as politicians and athletes, through classifying those sentiments into positive and negative. Classification of people sentiment could be automated through using machine learning algorithms and could be enhanced through using appropriate feature selection methods. We collected most recent tweets about (Amazon, Trump, Chelsea FC, CR7) using Twitter-Application Programming Interface and assigned sentiment score using lexicon rule-based approach, then proposed a machine learning model to improve classification accuracy through using hybrid feature selection method, namely, filter-based feature selection method Chi-square (Chi-2) plus wrapper-based binary coordinate ascent (Chi-2 + BCA) to select optimal subset of features from term frequency-inverse document frequency (TF-IDF) generated features for classification through support vector machine (SVM), and Bag of words generated features for logistic regression (LR) classifiers using different n-gram ranges. After comparing the hybrid (Chi-2+BCA) method with (Chi-2) selected features, and also with the classifiers without feature subset selection, results show that the hybrid feature selection method increases classification accuracy in all cases. The maximum attained accuracy with LR is 86.55% using (1 + 2 + 3-g) range, with SVM is 85.575% using the unigram range, both in the CR7 dataset.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255307
Author(s):  
Fujun Wang ◽  
Xing Wang

Feature selection is an important task in big data analysis and information retrieval processing. It reduces the number of features by removing noise, extraneous data. In this paper, one feature subset selection algorithm based on damping oscillation theory and support vector machine classifier is proposed. This algorithm is called the Maximum Kendall coefficient Maximum Euclidean Distance Improved Gray Wolf Optimization algorithm (MKMDIGWO). In MKMDIGWO, first, a filter model based on Kendall coefficient and Euclidean distance is proposed, which is used to measure the correlation and redundancy of the candidate feature subset. Second, the wrapper model is an improved grey wolf optimization algorithm, in which its position update formula has been improved in order to achieve optimal results. Third, the filter model and the wrapper model are dynamically adjusted by the damping oscillation theory to achieve the effect of finding an optimal feature subset. Therefore, MKMDIGWO achieves both the efficiency of the filter model and the high precision of the wrapper model. Experimental results on five UCI public data sets and two microarray data sets have demonstrated the higher classification accuracy of the MKMDIGWO algorithm than that of other four state-of-the-art algorithms. The maximum ACC value of the MKMDIGWO algorithm is at least 0.5% higher than other algorithms on 10 data sets.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 187
Author(s):  
Rattanawadee Panthong ◽  
Anongnart Srivihok

Liver cancer data always consist of a large number of multidimensional datasets. A dataset that has huge features and multiple classes may be irrelevant to the pattern classification in machine learning. Hence, feature selection improves the performance of the classification model to achieve maximum classification accuracy. The aims of the present study were to find the best feature subset and to evaluate the classification performance of the predictive model. This paper proposed a hybrid feature selection approach by combining information gain and sequential forward selection based on the class-dependent technique (IGSFS-CD) for the liver cancer classification model. Two different classifiers (decision tree and naïve Bayes) were used to evaluate feature subsets. The liver cancer datasets were obtained from the Cancer Hospital Thailand database. Three ensemble methods (ensemble classifiers, bagging, and AdaBoost) were applied to improve the performance of classification. The IGSFS-CD method provided good accuracy of 78.36% (sensitivity 0.7841 and specificity 0.9159) on LC_dataset-1. In addition, LC_dataset II delivered the best performance with an accuracy of 84.82% (sensitivity 0.8481 and specificity 0.9437). The IGSFS-CD method achieved better classification performance compared to the class-independent method. Furthermore, the best feature subset selection could help reduce the complexity of the predictive model.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1442 ◽  
Author(s):  
Tao Shen ◽  
Hong Yu ◽  
Yuan-Zhong Wang

Gentiana, which is one of the largest genera of Gentianoideae, most of which had potential pharmaceutical value, and applied to local traditional medical treatment. Because of the phytochemical diversity and difference of bioactive compounds among species, which makes it crucial to accurately identify authentic Gentiana species. In this paper, the feasibility of using the infrared spectroscopy technique combined with chemometrics analysis to identify Gentiana and its related species was studied. A total of 180 batches of raw spectral fingerprints were obtained from 18 species of Gentiana and Tripterospermum by near-infrared (NIR: 10,000–4000 cm−1) and Fourier transform mid-infrared (MIR: 4000–600 cm−1) spectrum. Firstly, principal component analysis (PCA) was utilized to explore the natural grouping of the 180 samples. Secondly, random forests (RF), support vector machine (SVM), and K-nearest neighbors (KNN) models were built while using full spectra (including 1487 NIR variables and 1214 FT-MIR variables, respectively). The MIR-SVM model had a higher classification accuracy rate than the other models that were based on the results of the calibration sets and prediction sets. The five feature selection strategies, VIP (variable importance in the projection), Boruta, GARF (genetic algorithm combined with random forest), GASVM (genetic algorithm combined with support vector machine), and Venn diagram calculation, were used to reduce the dimensions of the data variable in order to further reduce numbers of variables for modeling. Finally, 101 NIR and 73 FT-MIR bands were selected as the feature variables, respectively. Thirdly, stacking models were built based on the optimal spectral dataset. Most of the stacking models performed better than the full spectra-based models. RF and SVM (as base learners), combined with the SVM meta-classifier, was the optimal stacked generalization strategy. For the SG-Ven-MIR-SVM model, the accuracy (ACC) of the calibration set and validation set were both 100%. Sensitivity (SE), specificity (SP), efficiency (EFF), Matthews correlation coefficient (MCC), and Cohen’s kappa coefficient (K) were all 1, which showed that the model had the optimal authenticity identification performance. Those parameters indicated that stacked generalization combined with feature selection is probably an important technique for improving the classification model predictive accuracy and avoid overfitting. The study result can provide a valuable reference for the safety and effectiveness of the clinical application of medicinal Gentiana.


2015 ◽  
Vol 11 (6) ◽  
pp. 49 ◽  
Author(s):  
Dong Huang ◽  
Jian Gao

With the development of pen-based mobile device, on-line signature verification is gradually becoming a kind of important biometrics verification. This thesis proposes a method of verification of on-line handwritten signatures using both Support Vector Data Description (SVM) and Genetic Algorithm (GA). A 27-parameter feature set including shape and dynamic features is extracted from the on-line signatures data. The genuine signatures of each subject are treated as target data to train the SVM classifier. As a kernel based one-class classifier, SVM can accurately describe the feature distribution of the genuine signatures and detect the forgeries. To improving the performance of the authentication method, genetic algorithm (GA) is used to optimise classifier parameters and feature subset selection. Signature data form the SVC2013 database is used to carry out verification experiments. The proposed method can achieve an average Equal Error Rate (EER) of 4.93% of the skill forgery database.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi Chen ◽  
Tao Lin ◽  
Ningjiu Tang ◽  
Xin Xia

The extensive applications of support vector machines (SVMs) require efficient method of constructing a SVM classifier with high classification ability. The performance of SVM crucially depends on whether optimal feature subset and parameter of SVM can be efficiently obtained. In this paper, a coarse-grained parallel genetic algorithm (CGPGA) is used to simultaneously optimize the feature subset and parameters for SVM. The distributed topology and migration policy of CGPGA can help find optimal feature subset and parameters for SVM in significantly shorter time, so as to increase the quality of solution found. In addition, a new fitness function, which combines the classification accuracy obtained from bootstrap method, the number of chosen features, and the number of support vectors, is proposed to lead the search of CGPGA to the direction of optimal generalization error. Experiment results on 12 benchmark datasets show that our proposed approach outperforms genetic algorithm (GA) based method and grid search method in terms of classification accuracy, number of chosen features, number of support vectors, and running time.


Author(s):  
Muhang Zhang ◽  
Xiaohong Shen ◽  
Lei He ◽  
Haiyan Wang

Feature selection is an essential process in the identification task because the irrelevant and redundant features contained in the unselected feature set can reduce both the performance and efficiency of recognition. However, when identifying the underwater targets based on their radiated noise, the diversity of targets, and the complexity of underwater acoustic channels introduce various complex relationships among the extracted acoustic features. For this problem, this paper employs the normalized maximum information coefficient (NMIC) to measure the correlations between features and categories and the redundancy among different features and further proposes an NMIC based feature selection method (NMIC-FS). Then, on the real-world dataset, the average classification accuracy estimated by models such as random forest and support vector machine is used to evaluate the performance of the NMIC-FS. The analysis results show that the feature subset obtained by NMIC-FS can achieve higher classification accuracy in a shorter time than that without selection. Compared with correlation-based feature selection, laplacian score, and lasso methods, the NMIC-FS improves the classification accuracy faster in the process of feature selection and requires the least acoustic features to obtain classification accuracy comparable to that of the full feature set.


2016 ◽  
Vol 9 (2) ◽  
pp. 106
Author(s):  
Ratri Enggar Pawening ◽  
Tio Darmawan ◽  
Rizqa Raaiqa Bintana ◽  
Agus Zainal Arifin ◽  
Darlis Herumurti

Datasets with heterogeneous features can affect feature selection results that are not appropriate because it is difficult to evaluate heterogeneous features concurrently. Feature transformation (FT) is another way to handle heterogeneous features subset selection. The results of transformation from non-numerical into numerical features may produce redundancy to the original numerical features. In this paper, we propose a method to select feature subset based on mutual information (MI) for classifying heterogeneous features. We use unsupervised feature transformation (UFT) methods and joint mutual information maximation (JMIM) methods. UFT methods is used to transform non-numerical features into numerical features. JMIM methods is used to select feature subset with a consideration of the class label. The transformed and the original features are combined entirely, then determine features subset by using JMIM methods, and classify them using support vector machine (SVM) algorithm. The classification accuracy are measured for any number of selected feature subset and compared between UFT-JMIM methods and Dummy-JMIM methods. The average classification accuracy for all experiments in this study that can be achieved by UFT-JMIM methods is about 84.47% and Dummy-JMIM methods is about 84.24%. This result shows that UFT-JMIM methods can minimize information loss between transformed and original features, and select feature subset to avoid redundant and irrelevant features.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surendran Rajendran ◽  
Osamah Ibrahim Khalaf ◽  
Youseef Alotaibi ◽  
Saleh Alghamdi

AbstractIn recent times, big data classification has become a hot research topic in various domains, such as healthcare, e-commerce, finance, etc. The inclusion of the feature selection process helps to improve the big data classification process and can be done by the use of metaheuristic optimization algorithms. This study focuses on the design of a big data classification model using chaotic pigeon inspired optimization (CPIO)-based feature selection with an optimal deep belief network (DBN) model. The proposed model is executed in the Hadoop MapReduce environment to manage big data. Initially, the CPIO algorithm is applied to select a useful subset of features. In addition, the Harris hawks optimization (HHO)-based DBN model is derived as a classifier to allocate appropriate class labels. The design of the HHO algorithm to tune the hyperparameters of the DBN model assists in boosting the classification performance. To examine the superiority of the presented technique, a series of simulations were performed, and the results were inspected under various dimensions. The resultant values highlighted the supremacy of the presented technique over the recent techniques.


Sign in / Sign up

Export Citation Format

Share Document