Analyzing the Impact of the Northern Sea Route on Tramp Ship Routing with Uncertain Cargo Availability

Author(s):  
Mingyu Li ◽  
Kjetil Fagerholt ◽  
Peter Schütz
2019 ◽  
Vol 12 (8) ◽  
pp. 3449-3480 ◽  
Author(s):  
Gianandrea Mannarini ◽  
Lorenzo Carelli

Abstract. The latest development of the ship-routing model published in Mannarini et al. (2016a) is VISIR-1.b, which is presented here. The new version of the model targets large ocean-going vessels by considering both ocean surface gravity waves and currents. To effectively analyse currents in a graph-search method, new equations are derived and validated against an analytical benchmark. A case study in the Atlantic Ocean is presented, focussing on a route from the Chesapeake Bay to the Mediterranean Sea and vice versa. Ocean analysis fields from data-assimilative models (for both ocean state and hydrodynamics) are used. The impact of waves and currents on transatlantic crossings is assessed through mapping of the spatial variability in the tracks, an analysis of their kinematics, and their impact on the Energy Efficiency Operational Indicator (EEOI) of the International Maritime Organization. Sailing with or against the main ocean current is distinguished. The seasonal dependence of the EEOI savings is evaluated, and greater savings with a higher intra-monthly variability during winter crossings are indicated in the case study. The total monthly mean savings are between 2 % and 12 %, while the contribution of ocean currents is between 1 % and 4 %. Several other ocean routes are also considered, providing a pan-Atlantic scenario assessment of the potential gains in energy efficiency from optimal tracks, linking them to regional meteo-oceanographic features.


2019 ◽  
Vol 11 (22) ◽  
pp. 6367 ◽  
Author(s):  
Houming Fan ◽  
Jiaqi Yu ◽  
Xinzhe Liu

The International Maritime Organization (IMO) proposed to reduce the total CO2 emissions of the maritime sector by 50% by 2050, and strive to gradually achieve the zero-carbon target. Therefore, shipping companies need to consider environmental impacts while pursuing benefits. In view of the tramp ship scheduling with speed optimization problem, considering carbon emissions, the configuration of owner ships and charter ships, and the impact of sailing speed on ship scheduling with the target of minimizing the total costs of shipping companies, multi-type tramp ship scheduling and speed optimization considering carbon emissions is established. A genetic simulated annealing algorithm based on a variable neighborhood search is proposed to solve the problem. Firstly, the ship type is matched with the cargo. Then the route is generated according to the time constraint, and finally, the neighborhood search strategy is adopted to improve the solution quality. The effectiveness of the proposed model and algorithm is verified by an example, which also confirms that ship scheduling and sailing speed joint optimization can reduce costs and carbon emissions. Research results can not only deepen the study of the theory of tramp scheduling but also to effectively solve the tramp shipping schedule considering carbon emissions problems faced by companies to provide theoretical guidance.


2019 ◽  
Author(s):  
Gianandrea Mannarini ◽  
Lorenzo Carelli

Abstract. VISIR-I.b, the latest development of the ship routing model published in Mannarini et al. (2016a), is here presented. The new model version targets large ocean-going vessels by accounting for both waves and ocean currents. In order to effectively use currents in a graph-search method, new equations are derived and validated versus analytical benchmarks. A case study is computed in the Atlantic Ocean, on a route from the Chesapeake Bay to the Mediterranean Sea and vice versa. Ocean analysis fields from data-assimilative models (for both ocean state and hydrodynamics) are employed. The impact of waves and ocean currents on transatlantic crossings is assessed through mapping of the spatial variability of the routes, analysis of their kinematics, distribution of the optimal voyage duration vs. its length, and impact on the Energy Efficiency Operational Indicator of the International Maritime Organization. It is distinguished between sailing with or against the main ocean current. The seasonal dependence of the savings is evaluated, indicating, for the featured case study, larger savings during the summer crossings and larger intra-monthly variability in winter. The monthly-mean savings sum up to values between 3 and 12 %, while the contribution of ocean currents is between 1 and 4 %. Also, several other ocean routes are considered, providing a pan-Atlantic scenario assessment of the potential gains in energy efficiency from optimal tracks and linking them to regional meteo-oceanographic features.


2016 ◽  
Vol 8 (1) ◽  
pp. 292-303 ◽  
Author(s):  
Jun Ono ◽  
Jun Inoue ◽  
Akira Yamazaki ◽  
Klaus Dethloff ◽  
Hajime Yamaguchi

Author(s):  
Nils Reimer ◽  
Quang-Tan Duong

In order to simulate the impact of increased shipping activities to the arctic environment for a scenario with decreasing ice extent and ice volume, a simulation tool for ship travelling time was enhanced with regard to the determination of fuel consumption and exhaust emission on the Northern Sea Route (NSR). The tool was then used to investigate the impact of ships in different periods within the years 2000 and 2007 with various ice conditions. The transit speed is compared for different periods in the past and present by using ice records from different years together with route parameters and ship data as input for a simulation program. The program is able to calculate the ship resistance in open water and additional components due to wind, waves and ice within a speed range. By including specific propulsion data of the ship, a requested power is obtained for the speed range. The maximum speed is finally interpolated using the maximum available shaft power. The simulations are carried out for three different ship types with different hull shapes and propulsive power. The results show a significant decrease of travelling time for 2007 compared to 2000. Further in 2007 the season in which transport via the NSR is profitable is clearly extended to the winter months. In a second work task the program is further developed with respect to the determination of fuel oil consumption and exhaust gas emission. Due to increased resistance during ice breaking, high thrust has to be provided at low speed leading to an off design condition for propulsion arrangements which are optimised for service speed in open water. It can be found that the resulting actual fuel consumption is closely related to the operation profile of the ship. High values for fuel consumption thereby occur at service speed in ice free water but also at very low speeds in very tough ice conditions. For moderate ice conditions the fuel consumption and related emissions can be lower especially if the ship is forced to slow steaming for safety reasons.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


Sign in / Sign up

Export Citation Format

Share Document