scholarly journals Microstructure-Based Computational Analysis of Deformation and Fracture in Composite and Coated Materials Across Multiple Spatial Scales

Author(s):  
Ruslan R. Balokhonov ◽  
Varvara A. Romanova

AbstractA multiscale analysis is performed to investigate deformation and fracture in the aluminum-alumina composite and steel with a boride coating as an example. Model microstructure of the composite materials with irregular geometry of the matrix-particle and substrate-coating interfaces correspondent to the experimentally observed microstructure is taken into account explicitly as initial conditions of the boundary value problem that allows introducing multiple spatial scales. The problem in a plane strain formulation is solved numerically by the finite-difference method. Physically-based constitutive models are developed to describe isotropic strain hardening, strain rate and temperature effects, Luders band propagation and jerky flow, and fracture. Local regions experiencing bulk tension are found to occur during compression that control cracking of composites. Interrelated plastic strain localization in the steel substrate and aluminum matrix and crack origination and growth in the ceramic coating and particles are shown to depend on the strain rate, particle size and arrangement, as well as on the loading direction: tension or compression.

2007 ◽  
Vol 351 ◽  
pp. 65-69 ◽  
Author(s):  
Cun Zhu Nie ◽  
Jia Jun Gu ◽  
Jun Liang Liu ◽  
Di Zhang

The elevated temperature deformation and fracture behavior of an 10vol%B4CP/7039 aluminum matrix composite plate was investigated by uniaxial tensile tests at temperatures ranging from573 to 773 K and at initial strain rates from 1x10-1 to 1x10-4s-1.The strain rate sensitivity exponent was found to be approximately 0.1-0.15 which was below that of a superplastic material. A maximum elongation of 116% was obtained at an initial strain rate of 10-1 s-1 and at a temperature of 773 K.


2019 ◽  
Vol 612 ◽  
pp. 29-42 ◽  
Author(s):  
NR Evensen ◽  
C Doropoulos ◽  
KM Morrow ◽  
CA Motti ◽  
PJ Mumby

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Mendes ◽  
J. C. B. da Silva ◽  
J. M. Magalhaes ◽  
B. St-Denis ◽  
D. Bourgault ◽  
...  

AbstractInternal waves (IWs) in the ocean span across a wide range of time and spatial scales and are now acknowledged as important sources of turbulence and mixing, with the largest observations having 200 m in amplitude and vertical velocities close to 0.5 m s−1. Their origin is mostly tidal, but an increasing number of non-tidal generation mechanisms have also been observed. For instance, river plumes provide horizontally propagating density fronts, which were observed to generate IWs when transitioning from supercritical to subcritical flow. In this study, satellite imagery and autonomous underwater measurements are combined with numerical modeling to investigate IW generation from an initial subcritical density front originating at the Douro River plume (western Iberian coast). These unprecedented results may have important implications in near-shore dynamics since that suggest that rivers of moderate flow may play an important role in IW generation between fresh riverine and coastal waters.


2019 ◽  
Vol 79 (2) ◽  
pp. 314-322 ◽  
Author(s):  
F. Licciardello ◽  
R. Aiello ◽  
V. Alagna ◽  
M. Iovino ◽  
D. Ventura ◽  
...  

Abstract This study aims at defining a methodology to evaluate Ks reductions of gravel material constituting constructed wetland (CW) bed matrices. Several schemes and equations for the Lefranc's test were compared by using different gravel sizes and at multiple spatial scales. The falling-head test method was implemented by using two steel permeameters: one impervious (IMP) and one pervious (P) on one side. At laboratory scale, mean K values for a small size gravel (8–15 × 10−2 m) measured by the IMP and the P permeameters were equal to 19,466 m/d and 30,662 m/d, respectively. Mean Ks values for a big size gravel (10–25 × 10−2 m) measured by the IMP and the P permeameters were equal to 12,135 m/d and 20,866 m/d, respectively. Comparison of Ks values obtained by the two permeameters at laboratory scale as well as a sensitivity analysis and a calibration, lead to the modification of the standpipe equation, to evaluate also the temporal variation of the horizontal Ks. In particular, both permeameters allow the evaluation of the Ks decreasing after 4 years-operation and 1–1.5 years' operation of the plants at full scale (filled with the small size gravel) and at pilot scale (filled with the big size gravel), respectively.


2016 ◽  
Vol 15 (1) ◽  
pp. 96
Author(s):  
E. Iglesias-Rodríguez ◽  
M. E. Cruz ◽  
J. Bravo-Castillero ◽  
R. Guinovart-Díaz ◽  
R. Rodríguez-Ramos ◽  
...  

Heterogeneous media with multiple spatial scales are finding increased importance in engineering. An example might be a large scale, otherwise homogeneous medium filled with dispersed small-scale particles that form aggregate structures at an intermediate scale. The objective in this paper is to formulate the strong-form Fourier heat conduction equation for such media using the method of reiterated homogenization. The phases are assumed to have a perfect thermal contact at the interface. The ratio of two successive length scales of the medium is a constant small parameter ε. The method is an up-scaling procedure that writes the temperature field as an asymptotic multiple-scale expansion in powers of the small parameter ε . The technique leads to two pairs of local and homogenized equations, linked by effective coefficients. In this manner the medium behavior at the smallest scales is seen to affect the macroscale behavior, which is the main interest in engineering. To facilitate the physical understanding of the formulation, an analytical solution is obtained for the heat conduction equation in a functionally graded material (FGM). The approach presented here may serve as a basis for future efforts to numerically compute effective properties of heterogeneous media with multiple spatial scales.


2017 ◽  
Vol 375 ◽  
pp. 29-39
Author(s):  
Boris A. Tarasov ◽  
Stepan N. Nikitin ◽  
Dmitry P. Shornikov ◽  
Maria S. Tarasova ◽  
Igor I. Konovalov

Paper presents the results of the growth rate of the interaction layer of uranium-molybdenum dispersed fuel in aluminum matrix and influence of silicon alloying on it. The growth process of amorphous interaction layer depends on the radiation diffusion which is proportional to the fission rate in the power of 1⁄4. The alloying of the matrix by silicon does not lead to a change in the mechanism and kinetics of the interaction layer growth, but only slows it down.


2021 ◽  
Author(s):  
Ben L. Gilby ◽  
Andrew D. Olds ◽  
Christopher J. Brown ◽  
Rod M. Connolly ◽  
Christopher J. Henderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document