Management of Track and Field Injuries: Insights into Energy Availability in Athletes

2021 ◽  
pp. 319-327
Author(s):  
Tom G. H. Wiggers ◽  
John IJzerman ◽  
Petra Groenenboom
2021 ◽  
Vol 55 (16) ◽  
pp. 940.2-941
Author(s):  
J Wilkinson ◽  
L Mayhew

The prevalence of injury in adolescent elite track and field competitors is high,1 however only one study has been conducted with UK athletes.2 Relative Energy Deficiency in Sport (RED-S), encapsulating the Female Athlete Triad, is a syndrome whereby decreased energy availability affects health and performance, potentially leading to an increased injury risk; particularly to bone (3). Calculating decreased energy availability is difficult, however identifying contributing factors, such as disordered eating and menstrual dysfunction, is more viable.3AimThis study was conducted to identify the prevalence of musculoskeletal injury, disordered eating and menstrual dysfunction in elite junior UK track and field athletes.MethodData was collected from track and field athletes ranked within the top 10 of the UK U17 rankings in 2017 or 2018, with 138 athletes participating. Participants completed a self-reported musculoskeletal injury, disordered eating and menstrual dysfunction questionnaire relating to a 12-month time period.ResultsThis study found a 12-month retrospective injury prevalence of 43.5%. 13% of participants presented with disordered eating, whilst 37.7% of female participants presented with menstrual dysfunction. There was a statistically significant difference in injury prevalence according to gender, with more male athletes sustaining an injury compared with female athletes. No differences in injury prevalence were noted according to event group, menstrual dysfunction or disordered eating. The anatomical location displaying the highest prevalence of injury was the ankle and foot (22.5%). The anatomical structure displaying the highest 12-month injury prevalence was muscle (43.6%), followed by bone (30.9%). Additionally, 21.7% of respondents reported having previously sustained a stress fracture prior to taking part in this study.ConclusionThere is a high prevalence of injuries in junior UK track and field athletes, with most injuries affecting the lower limb. Although there was no difference noted in injury risk for athletes with menstrual dysfunction or disordered eating, the prevalence of bone injuries was alarmingly high. This study indicates the requirement for future research investigating RED-S within this population.ReferenceZemper, E. Track andField Injuries. In: Caine DJ, Maffulli N. (eds). Epidemiology of Pediatric Sports Injuries. Individual Sports. Med Sport Science: Volume 48. Basel, Karger; 2005. p. 138–151D’Souza D. Track and field athletics injuries - a one-year survey. British Journal of Sports Medicine 1994; 28 (3): 197–202.Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine 2014; 48: 491–497.


Author(s):  
Daniel Paduan Joaquim ◽  
Claudia Ridel Juzwiak ◽  
Ciro Winckler

One of the greatest challenges when working with athletes is to achieve the energy demands for physiological processes and exercise expenditure. The aim of this study was to assess the energy availability (EA) of Paralympic track and field athletes (sprinters). Seventeen athletes (9 male and 8 female) with visual impairment (VI, n=10), cerebral palsy (CP, n=4) and limb deficiency (LD, n=3) were assessed for energy intake (EI) (4-day food photographic record), energy expenditure with exercise (EEex) (motion sensor), and body composition (skinfolds method). Energy availability was estimated using the equation: EA = (EIkcal - EEexkcal) / fat-free mass (FFM) / day, and values ≤ 30kcal/kgFFM/day were considered as low energy availability (LEA). EEex varied from 130 to 477kcal/h and athletes trained in average for 3.2 hours per day. Mean EA for VI, LD and CP were 36 (2.19), 37 (1.90) and 38 (3.38) kcal/kgFFM/day, respectively. Most (82.3%) participants presented EA below ≥ 45kcal/kgFFM/day, throughout the days, which are the recommended values for athletes without disability. Athletes should be encouraged to consume adequate EA to avoid consequences related to low energy availability. There is need of further research to identify cut-off values adequate for this population.


Author(s):  
Graeme L. Close ◽  
Craig Sale ◽  
Keith Baar ◽  
Stephane Bermon

Injuries are an inevitable consequence of athletic performance with most athletes sustaining one or more during their athletic careers. As many as one in 12 athletes incur an injury during international competitions, many of which result in time lost from training and competition. Injuries to skeletal muscle account for over 40% of all injuries, with the lower leg being the predominant site of injury. Other common injuries include fractures, especially stress fractures in athletes with low energy availability, and injuries to tendons and ligaments, especially those involved in high-impact sports, such as jumping. Given the high prevalence of injury, it is not surprising that there has been a great deal of interest in factors that may reduce the risk of injury, or decrease the recovery time if an injury should occur: One of the main variables explored is nutrition. This review investigates the evidence around various nutrition strategies, including macro- and micronutrients, as well as total energy intake, to reduce the risk of injury and improve recovery time, focusing upon injuries to skeletal muscle, bone, tendons, and ligaments.


Author(s):  
Anna K. Melin ◽  
Ida A. Heikura ◽  
Adam Tenforde ◽  
Margo Mountjoy

The reported prevalence of low energy availability (LEA) in female and male track and field athletes is between 18% and 58% with the highest prevalence among athletes in endurance and jump events. In male athletes, LEA may result in reduced testosterone levels and libido along with impaired training capacity. In female track and field athletes, functional hypothalamic amenorrhea as consequence of LEA has been reported among 60% of elite middle- and long-distance athletes and 23% among elite sprinters. Health concerns with functional hypothalamic amenorrhea include impaired bone health, elevated risk for bone stress injury, and cardiovascular disease. Furthermore, LEA negatively affects recovery, muscle mass, neuromuscular function, and increases the risk of injuries and illness that may affect performance negatively. LEA in track and field athletes may occur due to intentional alterations in body mass or body composition, appetite changes, time constraints, or disordered eating behavior. Long-term LEA causes metabolic and physiological adaptations to prevent further weight loss, and athletes may therefore be weight stable yet have impaired physiological function secondary to LEA. Achieving or maintaining a lower body mass or fat levels through long-term LEA may therefore result in impaired health and performance as proposed in the Relative Energy Deficiency in Sport model. Preventive educational programs and screening to identify athletes with LEA are important for early intervention to prevent long-term secondary health consequences. Treatment for athletes is primarily to increase energy availability and often requires a team approach including a sport physician, sports dietitian, physiologist, and psychologist.


2013 ◽  
Vol 55 ◽  
pp. 119-131 ◽  
Author(s):  
Bernadette Carroll ◽  
Graeme Hewitt ◽  
Viktor I. Korolchuk

Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our ‘ageing’ world.


2011 ◽  
Author(s):  
Amanda C. Alexander ◽  
Jacob J. Levy ◽  
John W. Lounsbury

Sign in / Sign up

Export Citation Format

Share Document