scholarly journals Do paralympic track and field athletes have low energy availability?

Author(s):  
Daniel Paduan Joaquim ◽  
Claudia Ridel Juzwiak ◽  
Ciro Winckler

One of the greatest challenges when working with athletes is to achieve the energy demands for physiological processes and exercise expenditure. The aim of this study was to assess the energy availability (EA) of Paralympic track and field athletes (sprinters). Seventeen athletes (9 male and 8 female) with visual impairment (VI, n=10), cerebral palsy (CP, n=4) and limb deficiency (LD, n=3) were assessed for energy intake (EI) (4-day food photographic record), energy expenditure with exercise (EEex) (motion sensor), and body composition (skinfolds method). Energy availability was estimated using the equation: EA = (EIkcal - EEexkcal) / fat-free mass (FFM) / day, and values ≤ 30kcal/kgFFM/day were considered as low energy availability (LEA). EEex varied from 130 to 477kcal/h and athletes trained in average for 3.2 hours per day. Mean EA for VI, LD and CP were 36 (2.19), 37 (1.90) and 38 (3.38) kcal/kgFFM/day, respectively. Most (82.3%) participants presented EA below ≥ 45kcal/kgFFM/day, throughout the days, which are the recommended values for athletes without disability. Athletes should be encouraged to consume adequate EA to avoid consequences related to low energy availability. There is need of further research to identify cut-off values adequate for this population.

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2083
Author(s):  
María Villa ◽  
José G. Villa-Vicente ◽  
Jesus Seco-Calvo ◽  
Juan Mielgo-Ayuso ◽  
Pilar S. Collado

The aim of this study was to analyze dietary intake and body composition in a group of elite-level competitive rhythmic gymnasts from Spain. We undertook body composition and nutritional analysis of 30 elite gymnasts, divided into two groups by age: pre-teen (9–12 years) (n = 17) and teen (13–18 years) (n = 13). Measures of height, weight, and bioimpedance were used to calculate body mass index and percent body fat. Energy and nutrient intakes were assessed based on 7-day food records. The two groups had similar percentages of total body fat (pre-teen: 13.99 ± 3.83% vs. teen: 14.33 ± 5.57%; p > 0.05). The energy availability values for pre-teens were above the recommended values (>40 kcal/FFM/day) 69.38 ± 14.47 kcal/FFM/day, while those for the teens were much lower (34.7 ± 7.5 kcal/FFM/day). The distribution of the daily energy intake across the macronutrients indicates that both groups ingested less than the recommended level of carbohydrates and more than the recommended level of fat. Very low intakes of calcium and vitamin D among other micronutrients were also noted. The main finding is that teenage gymnasts do not consume as much energy as they need each day, which explains their weight and development. Moreover, they are at a high risk of developing low energy availability that could negatively impact their performance and future health.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 802
Author(s):  
Chaise Murphy ◽  
Laura D. Bilek ◽  
Karsten Koehler

Suppression of insulin-like growth factor 1 (IGF-1) and leptin secondary to low energy availability (LEA) may contribute to adverse effects on bone health. Whether a high-protein diet attenuates these effects has not been tested. Seven men completed three five-day conditions operationally defined as LEA (15 kcal kg fat-free mass (FFM)-1 day-1) with low protein (LEA-LP; 0.8 g protein·kg body weight (BW)-1), LEA with high protein (LEA-HP; 1.7 g protein·kg BW-1) and control (CON; 40 kcal·kg FFM-1·day-1, 1.7 g protein·kg BW-1). In all conditions, participants expended 15 kcal·kg FFM-1·day-1 during supervised cycling sessions. Serum samples were analyzed for markers of bone turnover, IGF-1 and leptin. The decrease in leptin during LEA-LP (-65.6 ± 4.3%) and LEA-HP (-54.3 ± 16.7%) was greater than during CON (-25.4 ± 11.4%; p = 0.02). Decreases in P1NP (p = 0.04) and increases in CTX-I (p = 0.04) were greater in LEA than in CON, suggesting that LEA shifted bone turnover in favour of bone resorption. No differences were found between LEA-LP and LEA-HP. Thus, five days of LEA disrupted bone turnover, but these changes were not attenuated by a high-protein diet.


2018 ◽  
Vol 28 (5) ◽  
pp. 490-496 ◽  
Author(s):  
Jennifer Sygo ◽  
Alexandra M. Coates ◽  
Erik Sesbreno ◽  
Margo L. Mountjoy ◽  
Jamie F. Burr

Low energy availability (LEA), and subsequent relative energy deficiency in sport, has been observed in endurance, aesthetic, and team sport athletes, with limited data on prevalence in athletes in short-burst activities such as sprinting. We examined prevalence of signs and symptoms of LEA in elite female sprinters at the start of the training season (PRE), and at the end of a 5-month indoor training period (POST). Four of 13 female sprinters (31%) presented at PRE testing with at least one primary (amenorrhea, low bone mineral density, low follicle-stimulating hormone, luteinizing hormone, or estradiol, resting metabolic rate ≤29 kcal/kg fat-free mass, Low Energy Availability in Females Questionnaire score ≥8) and one secondary indicator of LEA (fasting blood glucose <4 mmol/L, free triiodothyronine <3.5 pmol/L, ferritin <25 μg/L, low-density lipoprotein cholesterol >3.0 mmol/L, fasting insulin <20 pmol/L, low insulin-like growth factor-1, systolic blood pressure <90 mmHg, and/or diastolic blood pressure <60 mmHg). At POST, seven out of 13 athletes (54%) presented with at least one primary and one secondary indicator of LEA, three of whom had also presented with indicators of LEA at PRE. Five out of 13 (39%) athletes had previous stress fracture history, though this was not associated with current indicators of LEA (PRE: r = .52, p = .07; POST: r = −.07, p = .82). In conclusion, elite female sprinters may present with signs and symptoms of LEA, even after off-season rest. Medical and coaching staff should be aware of the signs and symptoms of LEA and relative energy deficiency in sport and should include appropriate screening and intervention strategies when working with sprinters.


2018 ◽  
Vol 28 (4) ◽  
pp. 434-439 ◽  
Author(s):  
George Wilson ◽  
Dan Martin ◽  
James P. Morton ◽  
Graeme L. Close

Despite consistent reports of poor bone health in male jockeys, it is not yet known if this is a consequence of low energy availability or lack of an osteogenic stimulus. Given the rationale that low energy availability is a contributing factor in low bone health, we tested the hypothesis that both hip and lumbar bone mineral density (BMD) should progressively worsen in accordance with the years of riding. In a cross-sectional design, male apprentice (n = 17) and senior (n = 14) jockeys (matched for body mass and fat-free mass) were assessed for hip and lumbar spine BMD, as well as both measured and predicted resting metabolic rate (RMR). Despite differences (p < .05) in years of race riding (3.4 ± 2 vs. 16.3 ± 6.8), no differences were apparent (p > .05) in hip (−0.9 ± 1.1 vs. −0.8 ± 0.7) and lumbar Z-scores (−1.3 ± 1.4 vs. −1.5 ± 1) or measured RMR (1,459 ± 160 vs. 1,500 ± 165 kcal/day) between apprentices and senior jockeys, respectively. Additionally, years of race riding did not demonstrate any significant correlations (p > .05) with either hip or lumbar spine BMD. Measured RMR was also not different (p > .05) from predicted RMR in either apprentice (1,520 ± 44 kcal/day) or senior jockeys (1,505 ± 70 kcal/day). When considered with previously published data examining underreporting of energy intake and direct assessments of energy expenditure, we suggest that low BMD in jockeys is not due to low energy availability per se but rather the lack of an osteogenic stimulus associated with riding.


Author(s):  
Johanna K. Ihalainen ◽  
Oona Kettunen ◽  
Kerry McGawley ◽  
Guro Strøm Solli ◽  
Anthony C. Hackney ◽  
...  

Purpose: To determine body composition, energy availability, training load, and menstrual status in young elite endurance running athletes (ATH) over 1 year, and in a secondary analysis, to investigate how these factors differ between nonrunning controls (CON), and amenorrheic (AME) and eumenorrheic (EUM) ATH. Correlations to injury, illness, and performance were also examined. Methods: Altogether 13 ATH and 8 CON completed the Low Energy Availability in Females Questionnaire. Anthropometric, energy intake, and peak oxygen uptake assessments were made at 4 time points throughout the year: at baseline post competition season, post general preparation, post specific preparation, and post competition season the following year. Logs of physical activity, menstrual cycle, illness, and injury were kept by all participants. Performance was defined using the highest International Association of Athletics Federations points prior to and after the study. Results: ATH had significantly lower body mass (P < .008), fat percentage (P < .001), and body mass index (P < .027) compared with CON, while energy availability did not differ between ATH and CON. The Low Energy Availability in Females Questionnaire score was higher in ATH than in CON (P < .028), and 8 ATH (vs zero CON) were AME. The AME had significantly more injury days (P < .041) and ran less (P < .046) than EUM, while total annual running distance was positively related to changes in performance in ATH (r < .62, P < .043, n < 11). Conclusions: More than half of this group of runners was AME, and they were injured more and ran less than their EUM counterparts. Furthermore, only the EUM runners increased their performance over the course of the year.


2021 ◽  
Vol 12 ◽  
Author(s):  
José R. Alvero-Cruz ◽  
Mieszko Brikis ◽  
Phil Chilibeck ◽  
Petra Frings-Meuthen ◽  
Jose F. Vico Guzmán ◽  
...  

Vertical jumping power declines with advancing age, which is theoretically explicable by loss of muscle mass and increases in body fat. However, the results of previous cross-sectional studies remain inconsistent on these relationships. The present study included 256 masters athletes who competed at the 2018 track and field world championships in Málaga, Spain. We assessed body composition with bioelectrical impedance (Inbody S10) and vertical jumping power with a Leonardo ground reaction force platform. Relationships between age, jumping power, and body composition were analyzed by correlation and regression analyses. Hierarchical multiple regression analysis was used to evaluate effects of each factor on vertical jumping power. Age-related rates of decreases in maximal power and jump height were similar between male and female athletes. Percent fat-free mass and percent body fat were negatively and positively, respectively, associated with age in masters athletes and were comparable to those previously observed in the general population. Moreover, these effects in body composition can, to a great extent, explain the age-related decline in jumping power, an effect that seems at least partly independent of age. Finally, the multiple regression model to determine independent predictors of vertical jump performance yielded an overall R2 value of 0.75 with the inclusion of (1) athletic specialization in power events, (2) percent fat-free mass, and (3) phase angle. However, partial regression yielded significant effects of age, but not gender, on peak power, even when adjusting for athletic specialization, percent fat-free mass, and phase angle. We concluded that loss of skeletal muscle mass and changes in bio-impedance phase angle are important contributors to the age-related reduction in anaerobic power, even in adults who maintain high levels of physical activity into old age. However, age per se remains a significant predictor of vertical jump performance, further demonstrating deteriorated muscle quality at old age (sarcosthenia).


2018 ◽  
Vol 53 (10) ◽  
pp. 628-633 ◽  
Author(s):  
Kathryn E Ackerman ◽  
Bryan Holtzman ◽  
Katherine M Cooper ◽  
Erin F Flynn ◽  
Georgie Bruinvels ◽  
...  

Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC.ObjectiveThe purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes.MethodsOne thousand female athletes (15–30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05).ResultsAthletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance.ConclusionThese findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.


Sign in / Sign up

Export Citation Format

Share Document