Building a High-Resolution 3D Geotechnical Model of Hanoi City (Vietnam) for Geohazard Assessment and Sustainable Development

Author(s):  
Viet-Ha Nhu
2021 ◽  
Author(s):  
Roberta Ivaldi ◽  
Maurizio Demarte ◽  
Massimiliano Nannini ◽  
Giuseppe Aquino ◽  
Cosimo Brancati ◽  
...  

<p>New hydro-oceanographic data were collected in the Arctic Ocean during HIGN NORTH20 marine geophysical campaign performed in July 2020, in a COVID-19 pandemic period. HIGH NORTH20 was developed as part of the IT-Navy HIGH NORTH program, a Pluriannual Joint Research Program in the Arctic devoted to contribute to oceans knowledge in order to ensure ocean science improving conditions for sustainable development of the Ocean in the aim of United Nations Decade of Ocean Science for Sustainable development and the GEBCO - SEABED 2030 project. In order to contribute in exploration and high-resolution seabed mapping new data was collected using a multibeam echosounder (EM 302 - 30 kHz). The particular sea ice environmental condition with open-sea allowed to survey and mapping the Molloy Hole, the deepest sector of the Arctic Ocean, a key area in the global geodynamics and oceanographic context. A 3D model of the Molloy Hole (804 km<sup>2</sup>) and the detection of the deepest seafloor (5567m - 79° 08.9’ N 002° 47.0’ E) was obtained with a 10x10m grid in compliance to the IHO standards.</p>


2019 ◽  
Vol 13 (2) ◽  
pp. 309-321 ◽  
Author(s):  
Nataliia Kussul ◽  
Mykola Lavreniuk ◽  
Andrii Kolotii ◽  
Sergii Skakun ◽  
Olena Rakoid ◽  
...  

2020 ◽  
Author(s):  
May Laor ◽  
Zohar Gvirtzman

<p>The Israeli continental slope is dissected by numerous thin-skinned normal faults, deforming the Pliocene-Quaternary section. This extensional faulting is caused by subsurface deformation of the Messinian salt underlying Pliocene rocks. It began in the early Gelasian, at 2.6 Ma, and it is still active today, as indicated by the ruptured seabed. High-resolution bathymetric data reveal shore-parallel seabed steps reaching heights of a few tens of meters. Considering that since the beginning of faulting the average sedimentation rate (100-400 m/My) exceeds the displacement rate (50-100 m/My), the presence of numerous unburied fault scarps indicates seismic ruptures rather than slow creep. For example, considering recent sedimentation rates as measured in seabed cores (5 cm/ka = 50 m/My), if an earthquake produces a 5-m-high fault scarp, it would take about 100 ky to bury it. These preliminary considerations highlight the importance of hazard assessment for seabed infrastructures.</p><p>The recent development of gas fields offshore Israel, as well as the increasing number of planned infrastructures on the seafloor requires a risk assessment, geohazard management, and particularly accurate mapping of faults. Unlike onshore geohazard management, there is no statutory fault map for offshore Israel. Moreover, 'active' and 'potentially active' faults in the offshore area are still not defined. The purpose of this study is to prepare a fault map and discuss criteria for defining the level of fault activity in the marine environment. To accomplish this goal, we use high-resolution bathymetric data and 3D seismic surveys, allowing 3D mapping of faults much better than usually possible onshore.</p><p>For bathymetry, we developed an algorithm, which automatically calculates the height of fault scars along predefined segments. Results indicate higher faults scarps in the north, consistent with extension measurement and steepness of the continental slope that also increases northward. A 3D mapping of fault planes shows that (1) many small faults at the seabed are actually segments of a major fault. This allows reducing the total number of faults to a few large ones. (2) A significant fault can be hidden below the surface with no bathymetric expression. (3) The structure of a seismic reflector dated to 350 ka emphasizes areas with greater recent activity much better than the best available bathymetric data. This allows a quick way to focus on hazardous areas. The next stage of the research will be to measure the area of fault planes and calculate potential earthquake magnitudes. Altogether, we point out the advantage of 3D seismic mapping for geohazard assessment.</p>


CONVERTER ◽  
2021 ◽  
pp. 384-398
Author(s):  
Zhe Jia, Anchen Qin

Based on the scientific identification and evaluation of scenic resources, the formulation of planning and management is of great significance to the sustainable development of tourism in national parks. This paper uses GF-2 high-resolution remote sensing images as the data source, and the Yesanpo National Park as the research area. It uses pixel-based MLC, NN, and SVM three classification methods to identify scenic resources, and adopts the system sampling method evaluation 3 methods to identify the classification accuracy of scenic resources, effectively improving the objectivity and accuracy of classification accuracy evaluation. The results show that the three classification methods used in GF-2 images meet the accuracy requirements of scenic resource identification, which is an effective method to identify scenic resources. Due to different geomorphic features, the erosion Zhanggu landform-Baili Xia scenic areas uses MLC classification, and granite fracture structure The canyon landform-LongmenTianguan scenic areas uses NN classification, and the karst cave spring landform-Yugu Dong scenic areas uses SVM classification with the highest overall accuracy. The results show that the proposed method can be applied to the identification of large-scale, high-resolution scenic resources, and provide more refined data support for scenic resource analysis and sustainable development of local tourism.


Author(s):  
Farhan Ahmed Khan ◽  
Siti Fahimah Bt M Zohdi ◽  
Quah Khoon Beng ◽  
Haslina Binti Mohamed ◽  
Mohd Azizul Mohd Yahya

Author(s):  
Austin Becker ◽  
Noah Hallisey ◽  
Gerald Bove

AbstractHurricanes and sea level rise pose significant threats to infrastructure and critical services (e.g., air and sea travel, water treatment), and can hinder sustainable development of major economic sectors (e.g., tourism, agriculture, and international commerce). Planning for a disaster-resilient future requires high-resolution, standardized data. However, few standardized approaches exist for identifying, inventorying, and quantifying infrastructure lands at risk from natural hazards. This research presents a cost effective, standardized and replicable method to geospatially inventory critical coastal infrastructure land use and components, for use in risk assessments or other regional analyses. While traditional approaches to geospatial inventorying rely on remote sensing or techniques, such as object-based image analysis (OBIA) to estimate land use, the current approach utilizes widely available satellite imagery and a “standard operating procedure” that guides individual mappers through the process, ensuring replicability and confidence. As a pilot study to develop an approach that can be replicated for other regions, this manuscript focuses on the Caribbean. Small islands rely heavily on a small number of critical coastal infrastructure (airports, seaports, power plants, water and wastewater treatment facilities) and climate related hazards threaten sustainable development and economic growth. The Caribbean is a large and diverse area, and gaps exist between countries in the resources required for planning but much of the region lacks a comprehensive inventory of the land, infrastructure, and assets at risk. Identifying and prioritizing infrastructure at risk is the first step towards preserving the region’s economy and planning for a disaster resilient future. This manuscript uses high resolution satellite imagery to identify and geo-spatially classify critical infrastructure land area and assets, such as structures, equipment, and impervious surfaces. We identified 386 critical coastal infrastructure facilities across 28 Caribbean nations/territories, with over 19,000 ha of coastal land dedicated to critical infrastructure. The approach establishes a new standard for the creation of geospatial data to assess land use change, risk, and other research questions suitable for the regional scale, but with sufficient resolution such that individual facilities can utilize the data for local-scale analysis.


2021 ◽  
Vol 13 (9) ◽  
pp. 1754
Author(s):  
Jonathan Reith ◽  
Gohar Ghazaryan ◽  
Francis Muthoni ◽  
Olena Dubovyk

Monitoring land degradation (LD) to improve the measurement of the sustainable development goal (SDG) 15.3.1 indicator (“proportion of land that is degraded over a total land area”) is key to ensure a more sustainable future. Current frameworks rely on default medium-resolution remote sensing datasets available to assess LD and cannot identify subtle changes at the sub-national scale. This study is the first to adapt local datasets in interplay with high-resolution imagery to monitor the extent of LD in the semiarid Kiteto and Kongwa (KK) districts of Tanzania from 2000–2019. It incorporates freely available datasets such as Landsat time series and customized land cover and uses open-source software and cloud-computing. Further, we compared our results of the LD assessment based on the adopted high-resolution data and methodology (AM) with the default medium-resolution data and methodology (DM) suggested by the United Nations Convention to Combat Desertification. According to AM, 16% of the area in KK districts was degraded during 2000–2015, whereas DM revealed total LD on 70% of the area. Furthermore, based on the AM, overall, 27% of the land was degraded from 2000–2019. To achieve LD neutrality until 2030, spatial planning should focus on hotspot areas and implement sustainable land management practices based on these fine resolution results.


Sign in / Sign up

Export Citation Format

Share Document