A Quick Trip into Local Singularities of Complex Curves and Surfaces

Author(s):  
Jawad Snoussi
Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1359 ◽  
Author(s):  
Gang Hu ◽  
Huinan Li ◽  
Muhammad Abbas ◽  
Kenjiro T. Miura ◽  
Guoling Wei

The S-λ model is one of the most useful tools for shape designs and geometric representations in computer-aided geometric design (CAGD), which is due to its good geometric properties such as symmetry, shape adjustable property. With the aim to solve the problem that complex S-λ curves and surfaces cannot be constructed by a single curve and surface, the explicit continuity conditions for G1 connection of S-λ curves and surfaces are investigated in this paper. On the basis of linear independence and terminal properties of S-λ basis functions, the conditions of G1 geometric continuity between two adjacent S-λ curves and surfaces are proposed, respectively. Modeling examples imply that the continuity conditions proposed in this paper are easy and effective, which indicate that the S-λ curves and surfaces can be used as a powerful supplement of complex curves and surfaces design in computer aided design/computer aided manufacturing (CAD/CAM) system.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2141
Author(s):  
Syed Ahmad Aidil Adha Said Mad Said Mad Zain ◽  
Md Yushalify Misro ◽  
Kenjiro T. Miura

The construction of new basis functions for the Bézier or B-spline curve has been one of the most popular themes in recent studies in Computer Aided Geometric Design (CAGD). Implementing the new basis functions with shape parameters provides a different viewpoint on how new types of basis functions can develop complex curves and surfaces beyond restricted formulation. The wide selection of shape parameters allows more control over the shape of the curves and surfaces without altering their control points. However, interpolated parametric curves with higher degrees tend to overshoot in the process of curve fitting, making it difficult to control the optimal length of the curved trajectory. Thus, a new parameter needs to be created to overcome this constraint to produce free-form shapes of curves and surfaces while still preserving the basic properties of the Bézier curve. In this work, a general fractional Bézier curve with shape parameters and a fractional parameter is presented. Furthermore, parametric and geometric continuity between two generalized fractional Bézier curves is discussed in this paper, as well as demonstrating the effect of the fractional parameter of curves and surfaces. However, the conventional parametric and geometric continuity can only be applied to connect curves at the endpoints. Hence, a new type of continuity called fractional continuity is proposed to overcome this limitation. Thus, with the curve flexibility and adjustability provided by the generalized fractional Bézier curve, the construction of complex engineering curves and surfaces will be more efficient.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1070
Author(s):  
Ming-Xiu Tuo ◽  
Gui-Cang Zhang ◽  
Kai Wang

The purpose of this article is to develop a new system for the construction of curves and surfaces. Making the new system not only has excellent properties of the orthodox Bézier and the B-spline method but also has practical properties such as variation diminishing and local shape adjustability. First, a new set of the quasi-cubic rational (QCR) system with two parameters is given, which is verified on an optimal normalized totally positive system (B-system). The related QCR Bézier curve is defined, and the de Casteljau-type algorithm are given. Next, a group of non-uniform QCR B-spline system is shown based on the linear combination of the proposed QCR system, the relative properties of the B-spline system are analyzed. Then, the definition and properties of non-uniform QCR B-spline curves are discussed in detail. Finally, the proposed QCR system is extended to the triangular domain, which is called the quasi-cubic rational Bernstein-Bézier (QCR-BB) system, and its related definition and properties of patches are given at length. The experimental image obtained by using MATLAB shows that the newly constructed system has excellent properties such as symmetry, totally positive, and C 2 continuity, and its corresponding curve has the properties of local shape adjustability and C 2 continuity. These extended systems in the extended triangular domain have symmetry, linear independence, etc. Hence, the methods in this article are suitable for the modeling design of complex curves and surfaces.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


1998 ◽  
Vol 39 (7) ◽  
pp. 3765-3771 ◽  
Author(s):  
M. Lakshmanan ◽  
R. Myrzakulov ◽  
S. Vijayalakshmi ◽  
A. K. Danlybaeva

2021 ◽  
Vol 179 (1) ◽  
pp. 59-74
Author(s):  
Josef Šlapal

In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line ℤ. Of these relations, we focus on a ternary one equipping the digital plane ℤ2 and the digital space ℤ3 with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedness provided by the closure operator is shown to be suitable for defining digital curves satisfying a digital Jordan curve theorem and digital surfaces satisfying a digital Jordan surface theorem.


1997 ◽  
Vol 11 (26n27) ◽  
pp. 3093-3124
Author(s):  
A. Marshakov

I consider main features of the formulation of the finite-gap solutions to integrable equations in terms of complex curves and generating 1-differential. The example of periodic Toda chain solutions is considered in detail. Recently found exact nonperturbative solutions to [Formula: see text] SUSY gauge theories are formulated using the methods of the theory of integrable systems and where possible the parallels between standard quantum field theory results and solutions to the integrable systems are discussed.


Sign in / Sign up

Export Citation Format

Share Document