Water Resource Allocation and Regulation in Yellow River Basin

Author(s):  
Dajun Shen
Water Policy ◽  
2021 ◽  
Author(s):  
Huiliang Wang ◽  
Shuoqiao Huang ◽  
Danyang Di ◽  
Yu Wang ◽  
Fengyi Zhang

Abstract To analyze the spatial distribution characteristics of water resource value in the agricultural system of the Yellow River Basin, this paper takes the Yellow River Basin as its research object and studies the spatial distribution characteristics and influencing factors of water resource value in the agricultural system using the emergy theory and method, the spatial autocorrelation analysis method, and the spatial regression model. The results show that (1) the value of water resources in the agricultural system ranges from 0.64 to 0.98$/m3, and the value in the middle and lower reaches of the basin is relatively high; (2) the Moran index of the water resource value in the agricultural system is 0.2772, showing a positive spatial autocorrelation feature. Here, ‘high-high (high value city gathering)’ is the main aggregation mode, which is mainly concentrated in the middle and lower reaches of the basin. (3) The spatial error model, moreover, has the best simulation effect. The cultivated land area, total agricultural output value, agricultural labor force, and total mechanical power have a significant positive impact on the agricultural production value of water resources in the Yellow River Basin; the altitude, annual average temperature, and agricultural water consumption have a negative impact. Overall, this study shows that guiding the distribution of water resources according to their value and increasing agricultural water use in the middle and lower reaches of the basin will help improve the overall agricultural production efficiency of water resources in the basin.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1184 ◽  
Author(s):  
Qi Han ◽  
Guangming Tan ◽  
Xiang Fu ◽  
Yadong Mei ◽  
Zhenyu Yang

Water scarcity is an important issue in many countries, and it is therefore necessary to improve the efficiency and equality of water resource allocation for decision makers. Based on game theory (GT), a bi-level optimization model is developed from the perspective of a leader-follower relationship among agents (stakeholders) of a river basin in this study, which consists of a single-agent GT-based optimization model of common interest and a multi-agent cooperative GT-based model. The Hanjiang River Basin is chosen as a case study, where there are conflicts among different interest agents in this basin. The results show that the proposed bi-level model could attain the same improvement of common interest by 8%, with the conventional optimal model. However, different from the conventional optimal model, since the individual interests have been considered in the bi-level optimization model, the willingness of cooperation of individuals has risen from 20% to 80%. With a slight decrease by 3% of only one agent, the increases of interest of other agents are 14%, 18%, 7%, and 14%, respectively, when using the bi-level optimization model. The conclusion could be drawn that the proposed model is superior to the conventional optimal model. Moreover, this study provides scientific support for the large spatial scale water resource allocation model.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2974
Author(s):  
Hao Zhang ◽  
Wei He ◽  
Haihong Xu ◽  
Hao Yang ◽  
Zhixing Ren ◽  
...  

This study introduces a fuzzy method to construct the interval fuzzy two-stage robust (ITSFR) water resource optimal allocation model based on the interval two-stage robust (ITSR) water resource optimal allocation model. Optimal economic benefit was considered the objective function, and the number of available water resources, sewage treatment capacity, reuse water treatment capacity, and total pollutant control were considered as the constraints. Under three five-year planning periods (2015–2020, 2020–2025, and 2025–2030) and according to the allocation levels of dry, flat, and abundant water periods (low, medium, and high discharge), the pollution absorption, upgrading projects, and water resource allocation schemes of various water sectors (industry, municipal life, ecological environment, and agricultural sector) in the Yinma River Basin were optimized. Water consumption quota is an interval value; high and low water consumption lead to a waste of water resources in the water consumption sector and restrict the development of the water consumption sector, respectively, which indicates that the water consumption quota has the characteristics of fuzzy uncertainty. Therefore, the optimization model was set as a fuzzy parameter in the solution process. The simulation results indicated that water quota can directly influence the income of water resource use, and thus, indirectly influence the economic benefit of the Yinma River Basin during the planning period. In the planning period of the Yinma River Basin, the economic benefit interval of dry, flat, and abundant water periods was reduced by 57%, 55%, and 48%, respectively, which provides a robust method with the advantages of a balanced economy, a stable system, reduced decision-making space, and significantly improved decision-making efficiency. Moreover, the emission ranges of typical pollution indicators (chemical oxygen demand (COD) and ammonia nitrogen) in the eight counties and urban areas of the Yinma River Basin were significantly reduced during the three planning periods (Dehui area had the highest overall reduction of ammonia nitrogen in the industrial sector during the second five-year planning period, up to 65%), which indicated a significant improvement in the decision-making efficiency. In addition to the Changchun City planning areas dominated by the agriculture production water sector, water resource allocation accounts for >80% of the regional water resource allocation; using the fuzzy optimization method after the Yinma River Basin water resource allocation model, the overall water deficit was significantly reduced; moreover, it was almost the same as in the first five-year period of Changchun City industry water deficit, which declined by up to 33%. The problem of resource waste caused by excessive water limiting in the water sector could be avoided because of the fuzzy water limit. To solve the prominent problem of water deficit in large- and medium-sized cities in the basin, industrial and ecological water sectors can implement measures such as water resource reuse. The total amount of water reuse in a medium year increases by up to 46% compared with that in the ITSR optimization model, which can be attributed to the reduced water consumption limit range of water consumption sectors after the fuzzy water consumption limit. This shows that more water can be allocated to meet the requirements of the water sector during decision-making. In conclusion, this study offers an effective scheme for decision makers to plan water resource allocation in the Yinma River Basin.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 710 ◽  
Author(s):  
Danyang Di ◽  
Zening Wu ◽  
Xi Guo ◽  
Cuimei Lv ◽  
Huiliang Wang

Value accounting of water in the Yellow River Basin is a key issue in managing local water resources in an efficient, equitable, and sustainable way. In view of the dubious current theories of water resource value, the value transfer of water resources, based on energy flow, is discussed from the perspective of eco-economics. An emergy analysis method is introduced to quantify both the sediment transportation value and social value, and a quantitative system of eco-economic value indicators is constructed. The water resource values of 66 cities in the Basin were calculated, and the GIS atlas was used to describe their spatial distribution. Eight typical cities were selected for the key analysis. The results show that: (1) Among the sub-items, the social value of water per unit is the largest, reaching 30.67 Chinese Yuan/m³, and the difference between the maximum and minimum is only 0.04%, which reflects the social equity of water resources. (2) The eco-environmental value inside the river is generally higher than that of industry, and it is verified that industrial water should not intrude the eco-environmental water in the river. (3) The unit agricultural value of water is the lowest among the sub-items, and the construction of water-saving agriculture should be carried out.


2018 ◽  
Vol 246 ◽  
pp. 01083
Author(s):  
Yu wang ◽  
Shaoming Peng ◽  
Guiqin Jiang ◽  
Hongbin Fang

Yellow River is an important source of water for northwest and north China, and an important strategic guarantee for the sustainable economic and social development of the Yellow River basin and its related regions. The Yellow River water allocation scheme (Scheme 1987 in short) was approved in 1987 by the State Council, which was the first river water allocation scheme in China. It allocates a total volume of 58 billion m3 of water to the 11 provinces along the river and its ecosystem. However, with the deepening impact of climate change and human activities, the Yellow River water resource and its development situations have some changes and the water resource of the drainage basin faces new situations, so it is urgent to carry out the optimization and adjustment study of Scheme 1987 under the new situation. The background and promulgation process of Scheme 1987 was reviewed comprehensively, and its implementation effect for 30 years was analyzed from two periods before and after unified dispatching. The new situation of the development of the Yellow River basin in the future was analyzed, and the work to be carried out to optimize and adjust the Scheme 1987 was prospected.


Sign in / Sign up

Export Citation Format

Share Document