Spin-Polarized Plasmonics: Fresh View on Magnetic Nanoparticles

Author(s):  
Vladimir P. Drachev ◽  
Maria Pogodaeva ◽  
Sergey V. Levchenko ◽  
Ali E. Aliev
Author(s):  
Kazuyuki Koike ◽  
Hideo Matsuyama

Spin-polarized scanning electron microscopy (spin SEM), where the secondary electron spin polarization is used as the image signal, is a novel technique for magnetic domain observation. Since its first development by Koike and Hayakawa in 1984, several laboratories have extensively studied this technique and have greatly improved its capability for data extraction and its range of applications. This paper reviews the progress over the last few years.Almost all the high expectations initially held for spin SEM have been realized. A spatial resolution of several hundreds angstroms has been attained, which is nearly one order of magnitude higher than that of conventional methods for thick samples. Quantitative analysis of magnetization direction has been performed more easily than with conventional methods. Domain observation of the surface of three-dimensional samples has been confirmed to be possible. One of the drawbacks, a long image acquisition time, has been eased by combining highspeed image-signal processing with high speed scanning, although at the cost of image quality. By using spin SEM, the magnetic structure of a 180 degrees surface Neel wall, magnetic thin films, multilayered films, magnetic discs, etc., have been investigated.


2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-53-Pr11-57
Author(s):  
B. Vengalis ◽  
V. Plausinaitiene ◽  
A. Abrutis ◽  
Z. Saltyte ◽  
R. Butkute ◽  
...  

1971 ◽  
Vol 32 (C1) ◽  
pp. C1-932-C1-933 ◽  
Author(s):  
H. W. LEHMANN ◽  
G. HARBEKE ◽  
H. PINCH

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-9-C8-16 ◽  
Author(s):  
H. C. Siegmann ◽  
D. Mauri ◽  
D. Scholl ◽  
E. Kay

2012 ◽  
Vol E95.C (5) ◽  
pp. 871-878
Author(s):  
Masanari FUJITA ◽  
Mitsufumi SAITO ◽  
Michihiko SUHARA

PIERS Online ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Tsung-Han Tsai ◽  
Long-Sheng Kuo ◽  
Ping-Hei Chen ◽  
Chin-Ting Yang

2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


2020 ◽  
Vol 84 (11) ◽  
pp. 1362-1365
Author(s):  
A. V. Komina ◽  
R. N. Yaroslavtsev ◽  
Y. V. Gerasimova ◽  
S. V. Stolyar ◽  
I. A. Olkhovsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document