Deep Denoising Subspace Single-Cell Clustering

Author(s):  
Yijie Wang ◽  
Bo Yang
Keyword(s):  
2021 ◽  
Vol 1738 ◽  
pp. 012078
Author(s):  
Yaxuan Cui ◽  
Kunjie Luo ◽  
Zheyu Zhang ◽  
Saijia Liu

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ryan B. Patterson-Cross ◽  
Ariel J. Levine ◽  
Vilas Menon

Abstract Background Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems. Results Here, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple “robustness score” for each of these clusters, facilitating the assessment of cluster quality. Conclusion chooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.


2020 ◽  
Author(s):  
Snehalika Lall ◽  
Abhik Ghosh ◽  
Sumanta Ray ◽  
Sanghamitra Bandyopadhyay

ABSTRACTMany single-cell typing methods require pure clustering of cells, which is susceptible towards the technical noise, and heavily dependent on high quality informative genes selected in the preliminary steps of downstream analysis. Techniques for gene selection in single-cell RNA sequencing (scRNA-seq) data are seemingly simple which casts problems with respect to the resolution of (sub-)types detection, marker selection and ultimately impacts towards cell annotation. We introduce sc-REnF, a novel and robust entropy based feature (gene) selection method, which leverages the landmark advantage of ‘Renyi’ and ‘Tsallis’ entropy achieved in their original application, in single cell clustering. Thereby, gene selection is robust and less sensitive towards the technical noise present in the data, producing a pure clustering of cells, beyond classifying independent and unknown sample with utmost accuracy. The corresponding software is available at: https://github.com/Snehalikalall/sc-REnF


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunxiang Wang ◽  
Xin Gao ◽  
Juntao Liu

Abstract Background Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite different effects on clustering algorithms. Moreover, there is no specific preprocessing method that is applicable to all clustering algorithms, and even for the same clustering algorithm, the best preprocessing method depends on the input data. Results We designed a graph-based algorithm, SC3-e, specifically for discriminating the best data preprocessing method for SC3, which is currently the most widely used clustering algorithm for single cell clustering. When tested on eight frequently used single-cell RNA-seq data sets, SC3-e always accurately selects the best data preprocessing method for SC3 and therefore greatly enhances the clustering performance of SC3. Conclusion The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhuo Wang ◽  
Shuilin Jin ◽  
Guiyou Liu ◽  
Xiurui Zhang ◽  
Nan Wang ◽  
...  

2018 ◽  
Author(s):  
Jingtian Zhou ◽  
Jianzhu Ma ◽  
Yusi Chen ◽  
Chuankai Cheng ◽  
Bokan Bao ◽  
...  

3D genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe HiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real data as benchmarks, HiCluster significantly improves clustering accuracy when applied to low coverage Hi-C datasets compared to existing methods. After imputation by HiCluster, structures similar to topologically associating domains (TADs) could be identified within single cells, and their consensus boundaries among cells were enriched at the TAD boundaries observed in bulk samples. In summary, HiCluster facilitates visualization and comparison of single-cell 3D genomes.


2019 ◽  
Author(s):  
Shiquan Sun ◽  
Jiaqiang Zhu ◽  
Ying Ma ◽  
Xiang Zhou

ABSTRACTBackgroundDimensionality reduction (DR) is an indispensable analytic component for many areas of single cell RNA sequencing (scRNAseq) data analysis. Proper DR can allow for effective noise removal and facilitate many downstream analyses that include cell clustering and lineage reconstruction. Unfortunately, despite the critical importance of DR in scRNAseq analysis and the vast number of DR methods developed for scRNAseq studies, however, few comprehensive comparison studies have been performed to evaluate the effectiveness of different DR methods in scRNAseq.ResultsHere, we aim to fill this critical knowledge gap by providing a comparative evaluation of a variety of commonly used DR methods for scRNAseq studies. Specifically, we compared 18 different DR methods on 30 publicly available scRNAseq data sets that cover a range of sequencing techniques and sample sizes. We evaluated the performance of different DR methods for neighborhood preserving in terms of their ability to recover features of the original expression matrix, and for cell clustering and lineage reconstruction in terms of their accuracy and robustness. We also evaluated the computational scalability of different DR methods by recording their computational cost.ConclusionsBased on the comprehensive evaluation results, we provide important guidelines for choosing DR methods for scRNAseq data analysis. We also provide all analysis scripts used in the present study atwww.xzlab.org/reproduce.html. Together, we hope that our results will serve as an important practical reference for practitioners to choose DR methods in the field of scRNAseq analysis.


Sign in / Sign up

Export Citation Format

Share Document