scholarly journals Selecting single cell clustering parameter values using subsampling-based robustness metrics

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ryan B. Patterson-Cross ◽  
Ariel J. Levine ◽  
Vilas Menon

Abstract Background Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems. Results Here, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple “robustness score” for each of these clusters, facilitating the assessment of cluster quality. Conclusion chooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunxiang Wang ◽  
Xin Gao ◽  
Juntao Liu

Abstract Background Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite different effects on clustering algorithms. Moreover, there is no specific preprocessing method that is applicable to all clustering algorithms, and even for the same clustering algorithm, the best preprocessing method depends on the input data. Results We designed a graph-based algorithm, SC3-e, specifically for discriminating the best data preprocessing method for SC3, which is currently the most widely used clustering algorithm for single cell clustering. When tested on eight frequently used single-cell RNA-seq data sets, SC3-e always accurately selects the best data preprocessing method for SC3 and therefore greatly enhances the clustering performance of SC3. Conclusion The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.


Author(s):  
Givanna H Putri ◽  
Irena Koprinska ◽  
Thomas M Ashhurst ◽  
Nicholas J C King ◽  
Mark N Read

Abstract Motivation Many ‘automated gating’ algorithms now exist to cluster cytometry and single-cell sequencing data into discrete populations. Comparative algorithm evaluations on benchmark datasets rely either on a single performance metric, or a few metrics considered independently of one another. However, single metrics emphasize different aspects of clustering performance and do not rank clustering solutions in the same order. This underlies the lack of consensus between comparative studies regarding optimal clustering algorithms and undermines the translatability of results onto other non-benchmark datasets. Results We propose the Pareto fronts framework as an integrative evaluation protocol, wherein individual metrics are instead leveraged as complementary perspectives. Judged superior are algorithms that provide the best trade-off between the multiple metrics considered simultaneously. This yields a more comprehensive and complete view of clustering performance. Moreover, by broadly and systematically sampling algorithm parameter values using the Latin Hypercube sampling method, our evaluation protocol minimizes (un)fortunate parameter value selections as confounding factors. Furthermore, it reveals how meticulously each algorithm must be tuned in order to obtain good results, vital knowledge for users with novel data. We exemplify the protocol by conducting a comparative study between three clustering algorithms (ChronoClust, FlowSOM and Phenograph) using four common performance metrics applied across four cytometry benchmark datasets. To our knowledge, this is the first time Pareto fronts have been used to evaluate the performance of clustering algorithms in any application domain. Availability and implementation Implementation of our Pareto front methodology and all scripts and datasets to reproduce this article are available at https://github.com/ghar1821/ParetoBench. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Brian Hie ◽  
Bryan Bryson ◽  
Bonnie Berger

AbstractResearchers are generating single-cell RNA sequencing (scRNA-seq) profiles of diverse biological systems1–4 and every cell type in the human body.5 Leveraging this data to gain unprecedented insight into biology and disease will require assembling heterogeneous cell populations across multiple experiments, laboratories, and technologies. Although methods for scRNA-seq data integration exist6,7, they often naively merge data sets together even when the data sets have no cell types in common, leading to results that do not correspond to real biological patterns. Here we present Scanorama, inspired by algorithms for panorama stitching, that overcomes the limitations of existing methods to enable accurate, heterogeneous scRNA-seq data set integration. Our strategy identifies and merges the shared cell types among all pairs of data sets and is orders of magnitude faster than existing techniques. We use Scanorama to combine 105,476 cells from 26 diverse scRNA-seq experiments across 9 different technologies into a single comprehensive reference, demonstrating how Scanorama can be used to obtain a more complete picture of cellular function across a wide range of scRNA-seq experiments.


2018 ◽  
Author(s):  
Wennan Chang ◽  
Changlin Wan ◽  
Xiaoyu Lu ◽  
Szu-wei Tu ◽  
Yifan Sun ◽  
...  

AbstractWe developed a novel deconvolution method, namely Inference of Cell Types and Deconvolution (ICTD) that addresses the fundamental issue of identifiability and robustness in current tissue data deconvolution problem. ICTD provides substantially new capabilities for omics data based characterization of a tissue microenvironment, including (1) maximizing the resolution in identifying resident cell and sub types that truly exists in a tissue, (2) identifying the most reliable marker genes for each cell type, which are tissue and data set specific, (3) handling the stability problem with co-linear cell types, (4) co-deconvoluting with available matched multi-omics data, and (5) inferring functional variations specific to one or several cell types. ICTD is empowered by (i) rigorously derived mathematical conditions of identifiable cell type and cell type specific functions in tissue transcriptomics data and (ii) a semi supervised approach to maximize the knowledge transfer of cell type and functional marker genes identified in single cell or bulk cell data in the analysis of tissue data, and (iii) a novel unsupervised approach to minimize the bias brought by training data. Application of ICTD on real and single cell simulated tissue data validated that the method has consistently good performance for tissue data coming from different species, tissue microenvironments, and experimental platforms. Other than the new capabilities, ICTD outperformed other state-of-the-art devolution methods on prediction accuracy, the resolution of identifiable cell, detection of unknown sub cell types, and assessment of cell type specific functions. The premise of ICTD also lies in characterizing cell-cell interactions and discovering cell types and prognostic markers that are predictive of clinical outcomes.


2020 ◽  
Vol 18 (04) ◽  
pp. 2040005
Author(s):  
Ruiyi Li ◽  
Jihong Guan ◽  
Shuigeng Zhou

Clustering analysis has been widely applied to single-cell RNA-sequencing (scRNA-seq) data to discover cell types and cell states. Algorithms developed in recent years have greatly helped the understanding of cellular heterogeneity and the underlying mechanisms of biological processes. However, these algorithms often use different techniques, were evaluated on different datasets and compared with some of their counterparts usually using different performance metrics. Consequently, there lacks an accurate and complete picture of their merits and demerits, which makes it difficult for users to select proper algorithms for analyzing their data. To fill this gap, we first do a review on the major existing scRNA-seq data clustering methods, and then conduct a comprehensive performance comparison among them from multiple perspectives. We consider 13 state of the art scRNA-seq data clustering algorithms, and collect 12 publicly available real scRNA-seq datasets from the existing works to evaluate and compare these algorithms. Our comparative study shows that the existing methods are very diverse in performance. Even the top-performance algorithms do not perform well on all datasets, especially those with complex structures. This suggests that further research is required to explore more stable, accurate, and efficient clustering algorithms for scRNA-seq data.


2019 ◽  
Author(s):  
Chenling Xu ◽  
Romain Lopez ◽  
Edouard Mehlman ◽  
Jeffrey Regier ◽  
Michael I. Jordan ◽  
...  

AbstractAs single-cell transcriptomics becomes a mainstream technology, the natural next step is to integrate the accumulating data in order to achieve a common ontology of cell types and states. However, owing to various nuisance factors of variation, it is not straightforward how to compare gene expression levels across data sets and how to automatically assign cell type labels in a new data set based on existing annotations. In this manuscript, we demonstrate that our previously developed method, scVI, provides an effective and fully probabilistic approach for joint representation and analysis of cohorts of single-cell RNA-seq data sets, while accounting for uncertainty caused by biological and measurement noise. We also introduce single-cell ANnotation using Variational Inference (scANVI), a semi-supervised variant of scVI designed to leverage any available cell state annotations — for instance when only one data set in a cohort is annotated, or when only a few cells in a single data set can be labeled using marker genes. We demonstrate that scVI and scANVI compare favorably to the existing methods for data integration and cell state annotation in terms of accuracy, scalability, and adaptability to challenging settings such as a hierarchical structure of cell state labels. We further show that different from existing methods, scVI and scANVI represent the integrated datasets with a single generative model that can be directly used for any probabilistic decision making task, using differential expression as our case study. scVI and scANVI are available as open source software and can be readily used to facilitate cell state annotation and help ensure consistency and reproducibility across studies.


2021 ◽  
Author(s):  
Nathanael Andrews ◽  
Martin Enge

Abstract CIM-seq is a tool for deconvoluting RNA-seq data from cell multiplets (clusters of two or more cells) in order to identify physically interacting cell in a given tissue. The method requires two RNAseq data sets from the same tissue: one of single cells to be used as a reference, and one of cell multiplets to be deconvoluted. CIM-seq is compatible with both droplet based sequencing methods, such as Chromium Single Cell 3′ Kits from 10x genomics; and plate based methods, such as Smartseq2. The pipeline consists of three parts: 1) Dissociation of the target tissue, FACS sorting of single cells and multiplets, and conventional scRNA-seq 2) Feature selection and clustering of cell types in the single cell data set - generating a blueprint of transcriptional profiles in the given tissue 3) Computational deconvolution of multiplets through a maximum likelihood estimation (MLE) to determine the most likely cell type constituents of each multiplet.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258982
Author(s):  
Brian Li ◽  
Kristen L. Cotner ◽  
Nathaniel K. Liu ◽  
Stefan Hinz ◽  
Mark A. LaBarge ◽  
...  

Cellular mechanical properties can reveal physiologically relevant characteristics in many cell types, and several groups have developed microfluidics-based platforms to perform high-throughput single-cell mechanical testing. However, prior work has performed only limited characterization of these platforms’ technical variability and reproducibility. Here, we evaluate the repeatability performance of mechano-node-pore sensing, a single-cell mechanical phenotyping platform developed by our research group. We measured the degree to which device-to-device variability and semi-manual data processing affected this platform’s measurements of single-cell mechanical properties. We demonstrated high repeatability across the entire technology pipeline even for novice users. We then compared results from identical mechano-node-pore sensing experiments performed by researchers in two different laboratories with different analytical instruments, demonstrating that the mechanical testing results from these two locations are in agreement. Our findings quantify the expectation of technical variability in mechano-node-pore sensing even in minimally experienced hands. Most importantly, we find that the repeatability performance we measured is fully sufficient for interpreting biologically relevant single-cell mechanical measurements with high confidence.


2018 ◽  
Author(s):  
Jingtian Zhou ◽  
Jianzhu Ma ◽  
Yusi Chen ◽  
Chuankai Cheng ◽  
Bokan Bao ◽  
...  

3D genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe HiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real data as benchmarks, HiCluster significantly improves clustering accuracy when applied to low coverage Hi-C datasets compared to existing methods. After imputation by HiCluster, structures similar to topologically associating domains (TADs) could be identified within single cells, and their consensus boundaries among cells were enriched at the TAD boundaries observed in bulk samples. In summary, HiCluster facilitates visualization and comparison of single-cell 3D genomes.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009305
Author(s):  
Suraj Kannan ◽  
Michael Farid ◽  
Brian L. Lin ◽  
Matthew Miyamoto ◽  
Chulan Kwon

The immaturity of pluripotent stem cell (PSC)-derived tissues has emerged as a universal problem for their biomedical applications. While efforts have been made to generate adult-like cells from PSCs, direct benchmarking of PSC-derived tissues against in vivo development has not been established. Thus, maturation status is often assessed on an ad-hoc basis. Single cell RNA-sequencing (scRNA-seq) offers a promising solution, though cross-study comparison is limited by dataset-specific batch effects. Here, we developed a novel approach to quantify PSC-derived cardiomyocyte (CM) maturation through transcriptomic entropy. Transcriptomic entropy is robust across datasets regardless of differences in isolation protocols, library preparation, and other potential batch effects. With this new model, we analyzed over 45 scRNA-seq datasets and over 52,000 CMs, and established a cross-study, cross-species CM maturation reference. This reference enabled us to directly compare PSC-CMs with the in vivo developmental trajectory and thereby to quantify PSC-CM maturation status. We further found that our entropy-based approach can be used for other cell types, including pancreatic beta cells and hepatocytes. Our study presents a biologically relevant and interpretable metric for quantifying PSC-derived tissue maturation, and is extensible to numerous tissue engineering contexts.


Sign in / Sign up

Export Citation Format

Share Document