Determination of Slope Stability Including Strain-Dependent Soil Behavior

Author(s):  
Kornelia Nitzsche ◽  
Ivo Herle
1997 ◽  
Vol 37 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Robert Y. Liang ◽  
Jihu Zhao ◽  
Stan Vitton

2011 ◽  
Vol 250-253 ◽  
pp. 2161-2166
Author(s):  
Jun Zhao Gao ◽  
Guo Feng Xiao ◽  
Hai Qiang Miao

Side slop losing stability is one of the main factors which greatly influences freeway expedite construction, especially after side slop losing stability the determination of rock and soil mechanics parameter may take a long time. Inversion method to analyze slope stability can preferably solve the problem. During the treatment of the ecological freeway landslide, we can not obtain important Parameters due to great disparity of sample Parameters of landslide. However, using inversion method to get cohesion and internal friction Angle, and anglicizing its sensitivity during calculation of stability can identify reliable Parameters. According to slope stability calculus, the ecological reinforcement design scheme come into effect.


2020 ◽  
Vol 8 (0) ◽  
pp. 46-57
Author(s):  
Chen Fang ◽  
Hideyoshi Shimizu ◽  
Tatsuro Nishiyama ◽  
Shin-Ichi Nishimura

1994 ◽  
Vol 31 (6) ◽  
pp. 1015-1021 ◽  
Author(s):  
Azm S. Al-Homoud ◽  
Ahmad B. Tal ◽  
Abdallah I. Husein (Malkawi)

This paper includes a summary of a geotechnical investigation of an embankment site at station 47 + 300 along the Irbid–Amman Highway in Jordan. The embankment suffered instability problems. This study includes geological and geotechnical mapping of the study area as well as determination of the engineering properties of the various materials encountered at the site.Stability analysis is carried out for the original embankment to explain the failure mechanism, assess the condition at the time of failure, and evaluate the soil parameters for use in stability analysis of remedial measures. Stability analysis is carried out for remedial works. Recommendations are suggested to stabilize the sliding area and to repair the road traversing this landslide zone. Key words : slope stability, embankment, remediation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dervis Volkan Okur ◽  
Seyfettin Umut Umu

Waste automobile tires are used as additives or replacements instead of traditional materials in civil engineering works. In geotechnical engineering, tires are shredded to certain sizes and mixed with soil, especially used as backfill material behind retaining walls or fill material for roadway embankments. Compared to soil, rubber has high damping capacity and low shear modulus. Therefore, it requires the determination of the dynamic characteristics of rubber/soil mixtures. In this paper, the cyclic behavior of recycled tire rubber and clean sand was studied, considering the effects of the amount and particle size of the rubber and confining stresses. A total of 40 stress-controlled tests were performed on an integrated resonant column and dynamic torsional shear system. The effects of the relative size and proportion of the rubber on the dynamic characteristics of the mixtures are discussed. The dynamic properties, such as the maximum shear modulus, strain-dependent shear modulus, and damping ratio, are examined. For practical purposes, simple empirical relationships were formulated to estimate the maximum shear modulus and the damping ratio. The change in the shear modulus and damping ratio with respect to shear strain with 5% of rubber within the mixture was found to be close to the behavior of clean sand.


Sign in / Sign up

Export Citation Format

Share Document